流体力学与飞行力学

分布式烧蚀形貌对高超声速平板边界层不稳定性影响

  • 李学良 ,
  • 李创创 ,
  • 张亚寒 ,
  • 苏伟 ,
  • 吴杰
展开
  • 1.华中科技大学 航空航天学院,武汉 430074
    2.北京航天长征飞行器研究所,北京 100076
.E-mail: jiewu@hust.edu.cn

收稿日期: 2024-03-29

  修回日期: 2024-06-03

  录用日期: 2024-06-21

  网络出版日期: 2024-06-25

Effect of distributed ablation pattern on hypersonic boundary-layer instability with a flat plate

  • Xueliang LI ,
  • Chuangchuang LI ,
  • Yahan ZHANG ,
  • Wei SU ,
  • Jie WU
Expand
  • 1.School of Aerospace Engineering,Huazhong University of Science and Technology,Wuhan 430074,China
    2.Beijing Institute of Space Long March Vehicle,Beijing 100076,China
E-mail: jiewu@hust.edu.cn

Received date: 2024-03-29

  Revised date: 2024-06-03

  Accepted date: 2024-06-21

  Online published: 2024-06-25

摘要

高超声速飞行器表面的热防护材料在经历高温烧蚀后,呈现出分布式粗糙元形貌,而这种形貌对高超声速边界层转捩的影响规律、机制目前尚无统一认识。基于华中科技大学‍∅0.5 m 马赫数6 高超声速Ludwieg管风洞开展了风洞试验,研究了光滑工况及高度为0.5、1.0、1.5、2.0 mm的分布式粗糙元表面工况下高超声速平板边界层内不稳定波的演化规律,开展了单位来流雷诺数5.39×106~1.72×107 m-1系列来流工况研究,明晰了分布式粗糙元高度因素、来流雷诺数对平板边界层不稳定性的影响。试验结果表明,在分布式粗糙元工况下,主导边界层不稳定性的仍为第二模态不稳定波,频率范围约位于60~120 kHz。对于高度低于当地边界层厚度的分布式粗糙元,高度因素对高超声速平板边界层的转捩位置影响较小。分布式粗糙元高度对高超声速平板边界层内第二模态不稳定波沿流向传播速度的影响是非单调性的,存在影响最大的临界高度。不同雷诺数来流条件下,光滑、粗糙工况下的第二模态波特征演化规律基本一致,且不同高度粗糙元工况在相同来流雷诺数下的边界层转捩位置区别不大。

本文引用格式

李学良 , 李创创 , 张亚寒 , 苏伟 , 吴杰 . 分布式烧蚀形貌对高超声速平板边界层不稳定性影响[J]. 航空学报, 2025 , 46(2) : 130464 -130464 . DOI: 10.7527/S1000-6893.2024.30464

Abstract

After experiencing high-temperature ablation, the thermal protection material on the surface of hypersonic vehicle exhibits a pattern of distributed roughness element. However, the effect of such pattern on hypersonic boundary layer transition and its influencing mechanism have not been recognized at present, which has attracted the attention of researchers. Wind tunnel experiments are carried out based on the ∅0.5 m Mach number 6 Ludwieg tube wind tunnel of Huazhong University of Science and Technology. The evolution of instability waves in the hypersonic boundary layer of the flat plate is studied in the cases of smooth and distributed roughness elements with four heights of 0.5, 1.0, 1.5, 2.0 mm and various of Reynolds number at 5.39 × 106 m-1 to 1.72 × 107 m-1. The effects of distributed roughness element height and incoming Reynolds numbers on the boundary layer instability of a flat plate are clarified. The experimental results show that the second mode instability waves dominate the instability of the hypersonic boundary layer in the case of distributed roughness element, and the frequency range is about 60 kHz to 120 kHz. For the distributed roughness element which is lower than the local boundary layer thickness, the height factor has little influence on the transition position of the hypersonic boundary layer. The influence of height of the distributed roughness element on the flow velocity of the second mode instability waves in the hypersonic plate boundary layer is non-monotonic, and there is a critical height that has the greatest influence. Under the inflow conditions of different Reynolds numbers, the characteristic evolution of the second mode instability waves in the smooth and roughness cases is basically the same, and the boundary layer transition positions of roughness elements at different heights have little difference with the inflow of the same Reynolds number.

参考文献

1 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学201949(11): 125-138.
  CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201949(11): 125-138 (in Chinese).
2 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报201735(2): 151-155.
  ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica201735(2): 151-155 (in Chinese).
3 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报201735(3): 311-337.
  CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica201735(3): 311-337 (in Chinese).
4 叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报201850(6): 1292-1310.
  YE Y D, ZHANG H X, JIANG Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics201850(6): 1292-1310 (in Chinese).
5 王宇天, 刘建新, 王晓坤, 等. 多孔壁面对高速边界层最优增长条带二次失稳的影响规律[J]. 航空学报202344(22): 128519.
  WANG Y T, LIU J X, WANG X K, et al. Effects of porous wall on secondary instability of optimal growth streaks in high speed boundary layers[J]. Acta Aeronautica et Astronautica Sinica202344(22): 128519 (in Chinese).
6 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报201536(1): 357-372.
  LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica201536(1): 357-372 (in Chinese).
7 刘强, 涂国华, 罗振兵, 等. 延迟高超声速边界层转捩技术研究进展[J]. 航空学报202243(7): 025357.
  LIU Q, TU G H, LUO Z B, et al. Progress in hypersonic boundary layer transition delay control[J]. Acta Aeronautica et Astronautica Sinica202243(7): 025357 (in Chinese).
8 LEE C B, CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review20196(1): 155-170.
9 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报202243(2): 124956.
  LI Q, WAN B B, YANG K, et al. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica202243(2): 124956 (in Chinese).
10 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报201836(2): 180-195.
  YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica201836(2): 180-195 (in Chinese).
11 刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报201836(2): 196-212.
  LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica201836(2): 196-212 (in Chinese).
12 张定金, 雷娟棉, 赵瑞. 壁温对高超声速裙锥边界层感受性影响规律研究[J]. 航空学报, doi: 10.7527/S1000-6893.2024.30290 .
  ZHANG D J, LEI J M, ZHAO R. Investigation of the influence of wall temperature on the receptivity of the hypersonic flare cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, doi: 10.7527/S1000-6893.2024.30290 (in Chinese).
13 解少飞, 杨武兵, 沈清. 高超声速边界层转捩机理及应用的若干进展回顾[J]. 航空学报201536(3): 714-723.
  XIE S F, YANG W B, SHEN Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica201536(3): 714-723 (in Chinese).
14 俞继军, 马志强, 姜贵庆, 等. C/C复合材料烧蚀形貌测量及烧蚀机理分析[J]. 宇航材料工艺200333(1): 36-39.
  YU J J, MA Z Q, JIANG G Q, et al. Pattern surface measure and ablation analysis for C/C composite material[J]. Aerospace Materials & Technology200333(1): 36-39 (in Chinese).
15 郑辉, 邱雷, 袁慎芳, 等. C/C热防护结构高温气流损伤导波监测实验方法[J]. 航空学报202243(8): 225659.
  ZHENG H, QIU L, YUAN S F, et al. Experimental method of guided wave monitoring for high temperature airflow damage of C/C thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica202243(8): 225659 (in Chinese).
16 朱广生, 姚世勇, 段毅. 高速飞行器减阻降热流动控制技术研究进展及工程应用[J]. 航空学报202344(15): 529049.
  ZHU G S, YAO S Y, DUAN Y. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles[J]. Acta Aeronautica et Astronautica Sinica202344(15): 529049 (in Chinese).
17 高俊杰, 俞继军, 韩海涛, 等. 树脂基烧蚀材料细观传热特性预测[J]. 航空学报201738(S1): 721512.
  GAO J J, YU J J, HAN H T, et al. Prediction of meso-heat transfer characteristics of resin-based ablative materials [J]. Acta Aeronautica et Astronautica Sinica201738(S1): 721512 (in Chinese).
18 STOCK H W, GINOUX J J. Hypersonic low temperature ablation an experimental study of cross-hatched surface patterns[C]∥NAPOLITANO LG, CONTENSOU P, HILTON WF. Astronautical Research 1971. Dordrecht: Springer, 1973: 105-120.
19 EKOTO I W, BOWERSOX R D W, BEUTNER T, et al. Supersonic boundary layers with periodic surface roughness[J]. AIAA Journal200846(2): 486-497.
20 PELTIER S J, HUMBLE R A, BOWERSOX R D W. Crosshatch roughness distortions on a hypersonic turbulent boundary layer[J]. Physics of Fluids201628(4): 045105.
21 苏伟, 董超, 薛普, 等. 考虑烧蚀表面形貌影响的气动特性精确预示方法[J]. 导弹与航天运载技术2023(1): 21-25.
  SU W, DONG C, XUE P, et al. Study on numerical simulation method of near wall flow on ablated rough surface[J]. Missiles and Space Vehicles2023(1): 21-25 (in Chinese).
22 SCHNEIDER S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets200845(2): 193-209.
23 董昊, 刘是成, 程克明. 粗糙元对高超声速边界层转捩影响的研究进展[J]. 实验流体力学201832(6): 1-15.
  DONG H, LIU S C, CHENG K M. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics201832(6): 1-15 (in Chinese).
24 段志伟, 肖志祥. 粗糙元诱导的高超声速边界层转捩[J]. 航空学报201637(8): 2454-2463.
  DUAN Z W, XIAO Z X. Roughness element induced hypersonic boundary layer transition[J]. Acta Aeronautica et Astronautica Sinica201637(8): 2454-2463 (in Chinese).
25 DUAN Z W, XIAO Z X. Hypersonic transition induced by three isolated roughness elements on a flat plate[J]. Computers & Fluids2017157: 1-13.
26 周云龙, 刘伟, 吴栋. 不同形状粗糙元在诱导超声速边界层转捩中的应用[J]. 国防科技大学学报201840(6): 17-22.
  ZHOU Y L, LIU W, WU D. Application of different roughness shapes in inducing supersonic boundary layer transition[J]. Journal of National University of Defense Technology201840(6): 17-22 (in Chinese).
27 朱德华, 袁湘江, 杨武兵. 粗糙元诱导的高超声速转捩机理及应用[J]. 航空学报201839(1): 121349.
  ZHU D H, YUAN X J, YANG W B. Mechanism of hypersonic transition induced by a roughness element and its application[J]. Acta Aeronautica et Astronautica Sinica201839(1): 121349 (in Chinese).
28 DONG H, LIU S C, GENG X, et al. Numerical and experimental investigation into hypersonic boundary layer transition induced by roughness elements[J]. Chinese Journal of Aeronautics201932(3): 559-567.
29 WHITEHEAD A H. Flow-field and drag characteristics of several boundary-layer tripping elements in hypersonic flow: NASA-TN-D-5454[R]. Washington, D.C.: NASA, 1969.
30 DUAN Z W, XIAO Z X. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition[C]∥7th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2014: 2495.
31 LEIDY A, KING R, CHOUDHARI M M, et al. Hypersonic second mode instability response to shaped roughness[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 0149.
32 MUPPIDI S, MAHESH K. Direct numerical simulations of roughness-induced transition in supersonic boundary layers[J]. Journal of Fluid Mechanics2012693: 28-56.
33 CHOUDHARI M M, LI F, PAREDES P. Effect of distributed patch of smooth roughness elements on transition in a high-speed boundary layer[C]∥2018 Fluid Dynamics Conference. Reston: AIAA, 2018: 3532.
34 CHOU A, PAREDES P, KEGERISE M A, et al. Transition induced by an egg-crate roughness on a flat plate in supersonic flow[J]. Journal of Fluid Mechanics2022948: A27.
35 GUI Y T, ZHANG C J, LI X L, et al. Hypersonic boundary-layer instability characterization and transition downstream of distributed roughness[J]. Experiments in Fluids202364(10): 159.
36 孔祥志, 韩宇峰. 高超声速平板边界层中波纹粗糙壁峰值热流的变化规律及预测[J]. 航空学报202344(12): 127769.
  KONG X Z, HAN Y F. Patterns and prediction of surface peak heat flux in hypersonic flat plate boundary layer over wave wall[J]. Acta Aeronautica et Astronautica Sinica202344(12): 127769 (in Chinese).
37 李学良, 李创创, 苏伟, 等. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报202445(2): 128627.
  LI X L, LI C C, SU W, et al. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability[J]. Acta Aeronautica et Astronautica Sinica202445(2): 128627 (in Chinese).
38 黄冉冉, 张成键, 李创创, 等. 华中科技大学Φ 0.5 m马赫6 Ludwieg管风洞设计与流场初步校测[J]. 空气动力学学报202341(1): 39-48, 85.
  HUANG R R, ZHANG C J, LI C C, et al. Design and preliminary freestream calibration of HUST Φ 0.5 m Mach 6 Ludwieg tube wind tunnel[J]. Acta Aerodynamica Sinica202341(1): 39-48, 85 (in Chinese).
39 MUNOZ F, WU J, RADESPIEL R, et al. Freestream disturbances characterization in Ludwieg tubes at Mach 6[C]?∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0878.
40 熊有德, 李创创, 张振辉, 等. 高超声速风洞自由来流扰动热线测量技术研究[J]. 航空学报202445(10): 129042.
  XIONG Y D, LI C C, ZHANG Z H, et al. Measurement on freestream disturbance with hot-wire anemometer in hypersonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica202445(10): 129042 (in Chinese).
41 张蕴弛. 人工扰动对高超声速边界层转捩影响:二次模态波的作用[D]. 北京: 北京大学, 2020.
  ZHANG Y C. Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer: the effect of second mode[D]. Beijing: Peking University, 2020 (in Chinese).
42 唐青. 高超声速平板边界层转捩实验研究[D]. 北京: 北京大学, 2014.
  TANG Q. Experimental study on boundary layer transition of hypersonic flat plate[D]. Beijing: Peking University, 2014 (in Chinese).
43 ROEDIGER T, KNAUSS H, KRAMER E, et al. Hypersonic instability waves measured using fast-response heat-flux gauges[C]?∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 638.
44 STETSON K, KIMMEL R. On hypersonic boundary-layer stability[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992: 737.
45 WU J, RADESPIEL R. Investigation of instability waves in a Mach 3 laminar boundary layer[J]. AIAA Journal201553(12): 3712-3725.
46 ESTORF M, RADESPIEL R, SCHNEIDER S, et al. Surface-pressure measurements of second-mode instability in quiet hypersonic flow[C]?∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 1153.
47 HEITMANN D, K?HLER C, RADESPIEL R, et al. Disturbance-level and roughness-induced transition measurements in a conical boundary layer at Mach 6[C]?∥26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2008: 3951.
48 MASLOV A A, SHIPLYUK A N, SIDORENKO A A, et al. Leading-edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics2001426(1): 73-94.
文章导航

/