流体力学与飞行力学

基于边界层理论的球头驻点热流计算方法

  • 田润雨 ,
  • 龚红明 ,
  • 常雨 ,
  • 孔小平
展开
  • 1.飞行器流体物理全国重点实验室,绵阳 621000
    2.中国空气动力研究与发展中心 超高速空气动力研究所,绵阳 621000
.E-mail: gh_ming@163.com

收稿日期: 2024-03-26

  修回日期: 2024-06-04

  录用日期: 2024-06-21

  网络出版日期: 2024-06-25

Calculation method for heat flow at stagnation point of spherical head based on boundary layer theory

  • Runyu TIAN ,
  • Hongming GONG ,
  • Yu CHANG ,
  • Xiaoping KONG
Expand
  • 1.National Key Laboratory of Aerospace Physics in Fluids,Mianyang 621000,China
    2.Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: gh_ming@163.com

Received date: 2024-03-26

  Revised date: 2024-06-04

  Accepted date: 2024-06-21

  Online published: 2024-06-25

摘要

准确获知球头驻点热流,对于飞行器防热设计至关重要。本文基于平衡空气球头驻点层流自相似边界层假设,开展了边界层方程相关推导,采用四阶龙格-库塔法数值求解坐标变换后的常微分边界层方程组,建立正向逼近打靶法,以寻找方程最优解,从而建立了通过求解边界层方程组获得球头驻点热流的方法,将该热流简称为BLES热流,在与试验值的对比中获得了较好的对比效果;以此方法为基础,针对高度10~60 km、不同速度、不同壁面温度的182个工况,开展了Fay-Riddell平衡流条件球头驻点热流公式计算偏差分析,发现在大部分工况下,壁面温度接近边界层外缘温度时,其热流计算值偏差明显增加;变形驻点热流表达式,将其中的无量纲参数拟合为多个无量纲参数组合的形式,得到了多参数拟合的新的球头驻点热流计算公式,并在多个工况下开展了热流计算效果对比研究,获得了优于Fay-Riddell平衡流条件球头驻点热流公式的应用效果。

本文引用格式

田润雨 , 龚红明 , 常雨 , 孔小平 . 基于边界层理论的球头驻点热流计算方法[J]. 航空学报, 2025 , 46(2) : 130448 -130448 . DOI: 10.7527/S1000-6893.2024.30448

Abstract

In aircraft thermal protection design, it is very important to accurately know the heat flux at the stagnation point of spherical head. Based on the assumption of self-similar boundary layer at the stagnation point of equilibrium air, the boundary layer equations are derived. The fourth-order Runge-Kutta method is used to numerically solve the ordinary differential boundary layer equations after coordinate transformation, and the forward approximation shooting method is established to find the optimal solution for the equations. Thus, by solving the boundary layer equations, a method for obtaining the heat flux at the stagnation point of the spherical head is established, which is referred to as Boundary Layer Equations Stagnation (abbreviated as BLES) heat flux in this paper. The results obtained are consistent with the experimental values. Using this method, the calculation deviation of heat flux formula of spherical stagnation point under Fay-Riddell equilibrium flow condition at 182 working conditions of 10–60 km height and different velocity and wall temperature is analyzed. It is found that in most working conditions, the calculation deviation of heat flux increases obviously when the wall temperature approaches the outer edge temperature of boundary layer. New heat flux formulas for spherical stagnation point are obtained by fitting the dimensionless parameters into a combination of several dimensionless parameters. The heat flux calculation results under several working conditions are compared, obtaining better results than those of the spherical stagnation point heat flux formula under the Fay-Riddell equilibrium flow condition.

参考文献

1 FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aerospace Sciences195825(2): 73-85.
2 万云博, 马戎, 王年华, 等. 基于混合网格多维梯度重构的热流预测方法研究[J]. 力学学报201850(5): 1003-1012.
  WAN Y B, MA R, WANG N H, et al. Accurate aero-heating predictions based on mul-ti-dimensional gradient reconstruction on hybrid unstructured grids[J]. Chinese Journal of Theoretical and Applied Mechanics201850(5): 1003-1012 (in Chinese).
3 胡守超, 庄宇, 李贤, 等. 高超声速气动热标模 HyHERM-I试验[J]. 航空学报202243(S2): 727804.
  HU S C, ZHUANG Y, LI X, et al. Hypersonic aero-heating environment research model HyHERM-I: Experiment[J]. Acta Aeronautica et Astronautica Sinica202243(S2): 727804 (in Chinese).
4 PRANDTL L. Applications of modern hydrodynamics to aeronautics: Report No.116[R]. Washington, D.C.: NACA, 1923.
5 孔祥志, 韩宇峰. 高超声速平板边界层中波纹粗糙壁峰值热流的变化规律及预测[J]. 航空学报202344(12): 127769.
  KONG X Z, HAN Y F. Patterns and prediction of surface peak heat flux in hypersonic flat plate boundarylayer over wave wall[J]. Acta Aeronautica et Astronautica Sinica202344(12): 127769 (in Chinese).
6 RESHOTKO E, COHEN C B.Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient[J].Technical Report Archive & Image Library195422(3325).
7 LEES L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds[J]. Journal of Jet Propulsion195626(4): 259-269.
8 TAUBER M E. A review of high-speed, convective, heat-transfer computation methods[J]. NASA STI/Recon Technical Report A198990: 8_1-8_63.
9 DORODNITSYN A A. Laminar boundary layer in compressible fluid[J]. Doklady Akademii Nauk194234: 213-219.
10 PARK S H, NEEB D, PLYUSHCHEV G, et al. A study on heat flux predictions for re-entry flight analysis[J]. Acta Astronautica2021187: 271-280.
11 田润雨, 龚红明, 常雨, 等. 高焓流场球头外形气动热试验研究[J]. 空气动力学学报202442(1): 1-12.
  TIAN R Y, GONG H M, CHANG Y, et al. Experimental study on aerodynamic heat of sphere heads in high enthalpy flow[J]. Acta Aerodynamica Sinica202442(1): 1-12 (in Chinese).
12 DE FILIPPIS F, SERPICO M. Air high-enthalpy stagnation point heat flux calculation[J]. Journal of Thermophysics and Heat Transfer199812(4): 608-610.
13 ZUPPARDI G, VERDE G. Improved fay-riddell procedure to compute the stagnation point heat flux[J]. Journal of Spacecraft and Rockets199835(3): 403-405.
14 LEE S, YANG Y, KIM J G. Evaluation of Fay and Riddell formula under hypersonic flight conditions[J]. International Journal of Numerical Methods for Heat & Fluid Flow202333(1): 14-41.
15 OLIVIER H. An improved method to determine free stream conditions in hypersonic facilities[J]. Shock Waves19933(2): 129-139.
16 曲齐齐. 高超声速钝头体表面热流数值模拟研究[D]. 天津: 天津大学, 2017: 24-31.
  QU Q Q. Numerical simulation of surface heat flux of hypersonic blunt body[D].Tianjin: Tianjin University, 2017: 24-31 (in Chinese).
17 GUPTA R N, LEE K P, THOMPSON R A, et al. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K: NASA Reference Publication 1260[R]. Washington, D.C.: NASA, 1991.
18 ANDERSON J D Jr. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: AIAA, 2006.
19 SRINIVASAN S, TANNEHILL J C, WEILMUENSTER K J. Simplified curve fits for the thermodynamic properties of equilibrium air: NASA Reference Publication 1181[R]. Washington, D.C.: NASA, 1987.
20 柳军. 热化学非平衡流及其辐射现象的实验和数值计算研究[D]. 长沙: 国防科学技术大学, 2004: 53-101.
  LIU J. Experimental and numerical study on thermochemical non-equilibrium flow and its radiation phenomenon[D].Changsha: National University of Defense Technology, 2004: 53-101 (in Chinese).
21 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 38-90.
  LI H Y. Numerical simulation of hypersonic high temperature gas flow field[D]. Mianyang: China Aerodynamics Research and Develop-ment Center, 2007: 38-90 (in Chinese).
22 刘国庆. 应用数值分析[M]. 北京: 化学工业出版社, 2020: 201-220.
  LIU G Q. Applied numerical analysis[M]. Beijing: Chemical Industry Press, 2020: 201-220 (in Chinese).
23 GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA Reference Publication 1232[R]. Washington, D. C.: NASA, 1990.
24 CHASE M W Jr, CURNUTT J L, DOWNEY J R Jr, et al. JANAF thermochemical tables, 1982 supplement[J]. Journal of Physical and Chemical Reference Data198211(3): 695-940.
25 MCBRIDE B J, ZEHE M J, GORDON S. NASA glenn coefficients for calculating thermodynamic properties of individual species: NASA/TP-2002-211556[R]. Washington, D. C.: NASA, 2002.
26 IRIMPAN K J, MENEZES V. Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models[J]. Journal of Aerospace Engineering2023237(6):1369-1375.
27 CHADWICK K, CHADWICK K. Stagnation heat transfer measurement techniques in hypersonic shock tunnel flows over spherical segments: AIAA-1997-2493[R]. Reston: AIAA, 1997.
28 MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in an expansion tunnel facility: AIAA-2012-0651[R]. Reston: AIAA, 2012.
文章导航

/