远距离逆行轨道的近距离编队轨道保持策略
收稿日期: 2024-02-22
修回日期: 2024-04-25
录用日期: 2024-06-13
网络出版日期: 2024-06-25
基金资助
中国科学院战略性先导科技专项(XDA30010200)
Stationkeeping strategies for close formation flight on distant retrograde orbits
Received date: 2024-02-22
Revised date: 2024-04-25
Accepted date: 2024-06-13
Online published: 2024-06-25
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA30010200)
远距离逆行轨道(DRO)是地月空间中一族大尺度、绕月逆行的周期轨道,由于具有长期稳定和低能转移的优势,其已成为许多地月空间任务的潜在轨道。研究DRO上的近距离编队技术对于地月空间在轨服务等任务具有重要意义。由于导航误差和控制误差的存在,因此有必要研究DRO近距离相对运动的误差演化,并进行轨道保持策略的设计。首先,介绍了通过Floquet分解得到的DRO线性化相对运动的基础解集。然后,针对以周期解为基础的伴飞编队,分别采用柯西-格林张量和无迹变换对DRO伴飞编队进行了敏感性和安全性的分析,基于这些分析并且考虑工程约束,发现机动频率为每个周期2次且机动位置位于2个近月点处是较优的轨道保持方案。之后,分别基于相对轨迹跟踪和绝对相位偏置的思想给出了两种轨道保持算法。仿真结果显示,2种算法都能保证DRO近距离编队保持长期的安全性以及合理的构型。
关键词: 远距离逆行轨道(DRO); 圆型限制性三体问题; 相对运动; 误差演化; 轨道保持
敖海跃 , 杨驰航 , 石玉 , 张皓 . 远距离逆行轨道的近距离编队轨道保持策略[J]. 航空学报, 2024 , 45(22) : 330306 -330306 . DOI: 10.7527/S1000-6893.2024.30306
Distant Retrograde Orbit (DRO) is a family of large-scale, lunar-retrograde periodic orbits in the cislunar space. Due to its advantages of long-term stability and low-energy transfer, DRO has become a potential orbit for many cislunar space missions. Investigating close formation techniques on DRO is of great significance for cislunar on-orbit servicing. Considering navigation and execution errors, it is essential to study the uncertainty propagation of close relative motion on DRO and design stationkeeping strategies. The fundamental solution set of linearized relative motion on DRO obtained through the Floquet theory is introduced. Based on periodic solutions, analyses of sensitivity and safety uncertainty propagation of DRO formation flight are conducted using the Cauchy-Green tensor and unscented transformation, respectively. Based on these analyses and considering engineering constraints, it is found that keeping the maneuver frequency of 2 times per cycle and the maneuver locations at two perilunes is the near-optimal stationkeeping scheme. Following this, two stationkeeping algorithms are proposed based on the concepts of relative trajectory following and absolute phase bias. The simulation results show that both stationkeeping algorithms can ensure long-term safety and reasonable configuration of DRO close formation flight.
1 | 彭超, 温昶煊, 高扬. 地月空间DRO与HEO(3∶1/2∶1)共振轨道延拓求解及其稳定性分析[J]. 载人航天, 2018, 24(6): 703-718. |
PENG C, WEN C X, GAO Y. DRO and HEO(3∶1/2∶1) resonant orbits in cislunar space calculated by continuation and their stability analysis [J]. Manned Spaceflight, 2018, 24(6): 703-718 (in Chinese). | |
2 | PEROZZI E, CECCARONI M, VALSECCHI G B, et al. Distant retrograde orbits and the asteroid hazard[J]. The European Physical Journal Plus, 2017, 132(8): 367. |
3 | 张晨, 张皓. 基于月球借力的低能DRO入轨策略[J]. 航空学报, 2023, 44(2): 326507. |
ZHANG C, ZHANG H. Lunar-gravity-assisted low-energy transfer from Earth into Distant Retrograde Orbit (DRO)[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 326507 (in Chinese). | |
4 | ZHANG Y Y, ZHANG W. Deep space exploration strategy based on distant retrograde orbits space station[J]. Journal of Physics: Conference Series, 2021, 2006(1): 012061. |
5 | BEZROUK C, PARKER J S. Long term evolution of distant retrograde orbits in the Earth-Moon system[J]. Astrophysics and Space Science, 2017, 362(9): 176. |
6 | 孟占峰, 高珊, 盛瑞卿. 嫦娥五号月球轨道交会导引策略设计[J]. 航空学报, 2023, 44(5): 326584. |
MENG Z F, GAO S, SHENG R Q. Lunar orbit rendezvous phasing design for Chang’e-5 Mission[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 326584 (in Chinese). | |
7 | LI W J, CHENG D Y, LIU X G, et al. On-orbit service (OOS) of spacecraft: A review of engineering developments[J]. Progress in Aerospace Sciences, 2019, 108: 32-120. |
8 | COCKELL C S, HERBST T, LéGER A, et al. Darwin—an experimental astronomy mission to search for extrasolar planets[J]. Experimental Astronomy, 2009, 23(1): 435-461. |
9 | 刘培栋, 焦博涵, 党朝辉. 面向空间引力波探测的多边形编队设计方法[J]. 航空学报, 2022, 43(S1): 726907. |
LIU P D, JIAO B H, DANG Z H. Design method of polygon formation for space-based gravitational-wave detection[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726907 (in Chinese). | |
10 | YANG C H, ZHANG H. Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization[J]. Astrodynamics, 2019, 3(2): 155-171. |
11 | 李霜琳, 蒲京辉, 郭鹏斌 等. DRO卫星编队同波束差分相对导航[J]. 深空探测学报(中英文), 2023, 10(2): 211-219. |
LI S L, PU J H, GUO P B, et al. Single-beam differential relative navigation of DRO satellite formation[J]. Journal of Deep Space Exploration, 2023, 10(2): 211-219 (in Chinese). | |
12 | 蒲京辉, 李霜琳, 刘江凯 等. 3种典型地月轨道的天基定轨与时间同步[J]. 深空探测学报(中英文), 10(6): 1-11. |
PU J H, LI S L, LIU J K, al er. Space-based orbit determination and time synchronization method for three typical cislunar orbits[J]. Journal of Deep Space Exploration, 2023, 10(6): 1-11 (in Chinese). | |
13 | CLOHESSY W H, WILTSHIRE R S. Terminal guidance system for satellite rendezvous [J]. Journal of the Aerospace Sciences, 1960, 27(9): 653-658. |
14 | TSCHAUNER J, HEMPEL P. Optimale beschleunigungsprogramme fur das rendezvous-manover[J]. Astronautica Acta, 1964, 10(5-6): 296. |
15 | GIM D W, ALFRIEND K T. State transition matrix of relative motion for the perturbed noncircular reference orbit[J]. Journal of Guidance Control Dynamics, 2003, 26(6): 956-971. |
16 | DANG Z H, ZHANG H. Linearized relative motion equations through orbital element differences for general Keplerian orbits[J]. Astrodynamics, 2018, 2(3): 201-215. |
17 | HOWELL K C, MILLARD L D. Control of satellite imaging formations in multi-body regimes[J]. Acta Astronautica, 2009, 64(5-6): 554-570. |
18 | PENG H J, LI C. Bound evaluation for spacecraft swarm on libration orbits with an uncertain boundary[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2690-2698. |
19 | PERNICKA H J, CARLSON B A, BALAKRISHNAN S N. Spacecraft formation flight about libration points using impulsive maneuvering[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1122-1130. |
20 | QI R, XU S J, XU M. Impulsive control for formation flight about libration points[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 484-496. |
21 | HOWELL K C, MARCHAND B G. Natural and non-natural spacecraft formations near the L1 and L2libration points in the Sun-Earth/Moon ephemeris system[J]. Dynamical Systems, 2005, 20(1): 149-173. |
22 | MENG Y H, ZHANG Y D, DAI J H. Floquet-based design and control approach to spacecraft formation flying in libration point orbits[J]. Science China Technological Sciences, 2011, 54(3): 758-766. |
23 | SIMANJUNTAK T, NAKAMIYA M, KAWAKATSU Y. Design of natural loose formation flying around halo orbits[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55(4): 254-262. |
24 | FRANZINI G, INNOCENTI M. Relative motion dynamics in the restricted three-body problem[J]. Journal of Spacecraft and Rockets, 2019, 56(5): 1322-1337. |
25 | YANG C H, WANG M, ZHANG H. Close relative motion on distant retrograde orbits[J]. Chinese Journal of Aeronautics, 2023, 36(3): 335-356. |
26 | 杨驰航, 符弘岚, 张皓. 远距离逆行轨道上的近距离自然及受控编队[J]. 航空学报, 2023, 44(5): 326563. |
YANG C H, FU H L, ZHANG H. Natural and non-natural close formation flight on distant retrograde orbits[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 326563 (in Chinese). | |
27 | WIESEL W, SHELTON W. Modal control of an unstable periodic orbit[J]. Journal of the Astronautical Sciences, 1983, 31: 63-76. |
28 | HOWELL K C, PERNICKA H J. Station-keeping method for libration point trajectories[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(1): 151-159. |
29 | DUNHAM D W, ROBERTS C E. Stationkeeping techniques for libration-point satellites[J]. The Journal of the Astronautical Sciences, 2001, 49(1): 127-144. |
30 | LIAN Y J, GóMEZ G, MASDEMONT J J, et al. Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10): 3792-3807. |
31 | GUZZETTI D, ZIMOVAN E M, HOWELL K C, et al. Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits [C]∥ 27th AAS/AIAA Space Flight Mechanics Meeting. San Antonio: American Astronautical Society, 2017: 3199-3218. |
32 | ZHANG R K, WANG Y, SHI Y, et al. Performance analysis of impulsive station-keeping strategies for cis-lunar orbits with the ephemeris model[J]. Acta Astronautica, 2022, 198: 152-160. |
33 | 赵育善, 师鹏, 张晨. 深空飞行动力学[M]. 北京: 中国宇航出版社, 2016: 131-134. |
ZHAO Y S, SHI P, ZHANG C. Deep space flight dynamics[M]. Beijing: Chinese Astronautic Publishing House, 2016: 131-134 (in Chinese). | |
34 | 陈冠华, 杨驰航, 张晨, 等. 地月空间的远距离逆行轨道族及其分岔研究[J]. 北京航空航天大学学报, 2022, 48(12): 2576-2588. |
CHEN G H, YANG C H, ZHANG C, et al. Distant retrograde orbits and its bifurcations in Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2576-2588 (in Chinese). | |
35 | MURALIDHARAN V, HOWELL K C. Stretching directions in cislunar space: applications for departures and transfer design[J]. Astrodynamics, 2023, 7(2): 153-178. |
36 | QIN S H, HUANG Y, LI P J, et al. Orbit and tracking data evaluation of Chang’E-4 relay satellite[J]. Advances in Space Research, 2019, 64(4): 836-846. |
37 | PARRISH N L, BOLLIGER M J, KAYSER E, et al. Near rectilinear halo orbit determination with simulated DSN observations: AIAA-2020-1700[R]. Reston: AIAA, 2020. |
38 | 段建锋, 张宇, 孔静, 等. 嫦娥五号定轨定位策略设计与精度评估[J]. 中国科学:物理学 力学 天文学, 2021,51(11):57-65. |
DUAN J F, ZHANG Y, KONG J, et al. Orbit determination, positioning strategy design, and accuracy evaluation of Chang’e-5[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(11): 57-65 (in-Chinese). |
/
〈 |
|
〉 |