激光扫频干涉绝对测距中的相位噪声补偿方法
收稿日期: 2024-04-22
修回日期: 2024-05-06
录用日期: 2024-06-01
网络出版日期: 2024-06-21
基金资助
国家自然科学基金(52205576);光电测量与智能感知中关村开放实验室开放基金(LabSOMP-2023-04);陕西省自然科学基础研究计划(2021JQ-187)
Laser phase noise compensation method in frequency scanning interferometry for absolute distance measurement
Received date: 2024-04-22
Revised date: 2024-05-06
Accepted date: 2024-06-01
Online published: 2024-06-21
Supported by
National Natural Science Foundation of China(52205576);Optoelectronic Measurement and Intelligent Perception Zhongguancun Open Lab(LabSOMP-2023-04);Natural Science Basic Research Program of Shaanxi(2021JQ-187)
激光扫频干涉(FSI)绝对测距技术在各类空间科学任务和航天工程中有着极大的应用潜力,然而调频光源的激光相位噪声会显著降低测量系统长距离下的测距分辨率。针对此问题,构建了具有光纤参考干涉仪的FSI绝对测距系统,并在此基础上提出了一种基于干涉信号噪声相位误差项级次分解的激光相位噪声补偿方法,并通过仿真和实验对所提出的激光相位噪声补偿方法进行了验证。仿真验证表明,在100 m、200 m、500 m距离下,利用所提出的激光相位噪声补偿方法,测量干涉信号的信噪比由-23.06 dB、-32.95 dB、-40.21 dB提升至33.97 dB、33.98 dB、33.97 dB,测距分辨率显著提升。测距实验结果表明,在114.887 m的被测光纤长度下,利用所提出的激光相位噪声补偿方法,测量干涉信号的信噪比由-19.08 dB提升至-2.22 dB,测距分辨率显著提升。
邓忠文 , 郭绍刚 , 陈文军 , 张恒康 , 孙海峰 , 沈利荣 , 李小平 . 激光扫频干涉绝对测距中的相位噪声补偿方法[J]. 航空学报, 2025 , 46(3) : 630561 -630561 . DOI: 10.7527/S1000-6893.2024.30561
The technique of absolute distance measurement with laser Frequency Scanning Interferometry (FSI) holds immense potential for various space science missions and aerospace engineering applications. However, the laser phase noise from the tunable light source significantly degrades the distance measurement resolution over long distances. To address this issue, this paper establishes an FSI absolute distance measurement system with a fiber optic reference interferometer. On this basis, a laser phase noise compensation method is proposed based on the hierarchical decomposition of interferometric signal noise phase error terms. The effectiveness of the proposed laser phase noise compensation method is validated through simulation and experiment. Simulation results demonstrate that at distances of 100 m, 200 m, and 500 m, employing the proposed method enhances the signal-to-noise ratio of the interferometric signal from -23.06 dB, -32.95 dB, -40.21 dB to 33.97 dB, 33.98 dB, and 33.97 dB, respectively, significantly improving distance resolution. Experimental distance measurement results indicate that with a measured fiber length of 114.887 m, utilizing the proposed method elevates the signal-to-noise ratio of the interferometric signal from -19.08 dB to -2.22 dB, resulting in a notable enhancement in distance resolution.
1 | ZHENG J H, JIA L H, ZHAI Y R, et al. High-precision silicon-integrated frequency-modulated continuous wave LiDAR calibrated using a microresonator[J]. ACS Photonics, 2022, 9(8): 2783-2791. |
2 | PAN H, QU X H, ZHANG F M. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance[J]. Optics Express, 2018, 26(12): 15186-15198. |
3 | 杨克元, 邓忠文, 陈文军, 等. 基于互补集合经验模态分解结合希尔伯特变换的光频扫描干涉信号相位提取方法[J]. 中国光学, 2023, 16(3): 682-700. |
YANG K Y, DENG Z W, CHEN W J, et al. Phase-extracting method of optical frequency scanning interference signals based on the CEEMD-HT algorithm?[J]. Chinese Optics, 2023, 16(3): 682-700 (in Chinese). | |
4 | SHI G, WANG W, ZHANG F M. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers[J]. Optics Communications, 2018, 411: 152-157. |
5 | LU C, XU Z Y, LIU G D, et al. FSI combined with heterodyne interferometer for non-cooperative targets distance measurement[J]. IEEE Photonics Technology Letters, 2022, 34(2): 85-88. |
6 | 许新科, 龙康, 徐靖翔, 等. 基于激光调频连续波正反向调谐色散对消方法[J]. 红外与毫米波学报, 2021, 40(2): 243-247. |
XU X K, LONG K, XU J X, et al. The method of dispersion cancellation based on the forward and reverse tuning of a laser frequency-modulated continuous wave system[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 243-247 (in Chinese). | |
7 | LIU Y, LIN J R, YANG L H, et al. Construction of traceable absolute distances network for multilateration with a femtosecond pulse laser[J]. Optics Express, 2018, 26(20): 26618-26632. |
8 | JIA X Y, LIU Z G, DENG Z W, et al. Dynamic absolute distance measurement by frequency sweeping interferometry based Doppler beat frequency tracking model[J]. Optics Communications, 2019, 430: 163-169. |
9 | CABRAL A, ABREU M, REBORD?O J M. Dual-frequency sweeping interferometry for absolute metrology of long distances[J]. Optical Engineering, 2010, 49(8): 085601. |
10 | SWINKELS B L, BHATTACHARYA N, BRAAT J J M. Correcting movement errors in frequency-sweeping interferometry[J]. Optics Letters, 2005, 30(17): 2242-2244. |
11 | 姚鑫, 李嘉敏, 王国永, 等. 面向星间激光干涉测距的高精度小型化验证系统[J]. 中国激光, 2022, 49 (9): 0915001. |
YAO X, LI J M, WANG G Y, et al. High-precision miniatur-ized demonstration system for inter-satellite laser inter-ferometric ranging[J]. Chinese Journal of Lasers, 2022, 49(9): 0915001. (in Chinese). | |
12 | DU Y, LIU T G, DING Z Y, et al. Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR[J]. IEEE Photonics Journal, 2014, 6(5): 7902811. |
13 | WARDEN M S. Precision of frequency scanning interferometry distance measurements in the presence of noise[J]. Applied Optics, 2014, 53(25): 5800-5806. |
14 | DILAZARO T, NEHMETALLAH G. Phase-noise model for actively linearized frequency-modulated continuous-wave ladar[J]. Applied Optics, 2018, 57(21): 6260-6268. |
15 | KOSHIKIYA Y, FAN X Y, ITO F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 2008, 26(18): 3287-3294. |
16 | BADAR M, HINO T, IWASHITA K. Phase noise cancelled OFDR with cm-level spatial resolution using phase diversity[J]. IEEE Photonics Technology Letters, 2014, 26(9): 858-861. |
17 | FENG Y X, XIE W L, MENG Y X, et al. High-performance optical frequency-domain reflectometry based on high-order optical phase-locking-assisted chirp optimization[J]. Journal of Lightwave Technology, 2020, 38(22): 6227-6236. |
18 | XIE W L, MENG Y X, FENG Y X, et al. Optical linear frequency sweep based on a mode-spacing swept comb and multi-loop phase-locking for FMCW interferometry[J]. Optics Express, 2021, 29(2): 604-614. |
19 | ITO F, FAN X Y, KOSHIKIYA Y. Long-range coherent ofdr with light source phase noise compensation[J]. 9th International Conference on Optical Communications and Networks (ICOCN 2010), 2010: 5-8. |
20 | DENG Z W, LIU Z G, JIA X Y, et al. Dynamic cascade-model-based frequency-scanning interferometry for real-time and rapid absolute optical ranging[J]. Optics Express, 2019, 27(15): 21929-21945. |
21 | ZHANG X S, POULS J, WU M C. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR[J]. Optics Express, 2019, 27(7): 9965-9974. |
22 | BEHROOZPOUR B, SANDBORN P A M, QUACK N, et al. Electronic-photonic integrated circuit for 3D microimaging[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 161-172. |
/
〈 |
|
〉 |