电子电气工程与控制

多功能多场景应用辐射定标光源光学系统设计

  • 刘显著 ,
  • 徐达 ,
  • 李栋 ,
  • 李林 ,
  • 刘石 ,
  • 王宇 ,
  • 郑佳伟
展开
  • 1.长春理工大学 光电工程学院,长春 130022
    2.空间智能控制技术全国重点实验室,北京 100190
    3.北京控制工程研究所,北京 100190
.E-mail: 418168115@qq.com

收稿日期: 2024-03-13

  修回日期: 2024-04-16

  录用日期: 2024-06-17

  网络出版日期: 2024-06-21

基金资助

国家自然科学基金(62105042);空间智能控制技术实验室开放基金(HTKJ2022KL502004)

Design of optical system for multifunctional and multiscenario applications of radiation calibration light source

  • Xianzhu LIU ,
  • Da XU ,
  • Dong LI ,
  • Lin LI ,
  • Shi LIU ,
  • Yu WANG ,
  • Jiawei ZHENG
Expand
  • 1.School of Optoelectronic Engineering,Changchun University of Science and Technology,Changchun 130022,China
    2.Space Intelligent Control Laboratory,Beijing 100190,China
    3.Beijing Institute of Control Engineering,Beijing 100190,China
E-mail: 418168115@qq.com

Received date: 2024-03-13

  Revised date: 2024-04-16

  Accepted date: 2024-06-17

  Online published: 2024-06-21

Supported by

National Natural Science Foundation of China(62105042);Science and Technology on Space Intelligent Control Laboratory(HTKJ2022KL502004)

摘要

目前空间遥感相机地面标定设备缺乏对各种谱线分布的精确模拟以及无法实现同时进行宽带和窄带的光谱辐射定标,导致空间遥感相机地面辐射定标精度低、宽带和窄带定标过程漫长复杂、无法实现多谱段光谱范围辐射定标测试。针对上述难题,提出一种基于前置准直扩束系统凹柱面光栅的光谱辐射定标系统的设计方法,针对凹柱面光栅的场曲特性,设计了楔形场曲补偿棱镜,并通过准直扩束系统减小系统的成像视场,提高凹柱面光栅分光系统的光谱分辨率,将整个系统的光谱分辨率提升了1倍多,由5 nm提升至2 nm。最后,对系统性能进行了测试,测试结果表明在宽带模式下,实现了500~900 nm光谱范围内3 000 K、6 400 K和9 000 K色温模拟,模拟误差优于5%;在窄带模式下,系统输出光束半峰宽度小于3 nm;在多谱段模式下,等能光谱的光谱模拟误差分别为545~600 nm处1.1%、630~690 nm处2.5%、680~725 nm处1.5%。所设计的系统满足空间相机、姿态导航系统以及遥感仪器的宽带、窄带辐射定标和多功能测试标定需求。

本文引用格式

刘显著 , 徐达 , 李栋 , 李林 , 刘石 , 王宇 , 郑佳伟 . 多功能多场景应用辐射定标光源光学系统设计[J]. 航空学报, 2024 , 45(19) : 330381 -330381 . DOI: 10.7527/S1000-6893.2024.30381

Abstract

Currently, ground calibration equipment for space remote sensing cameras lacks precise simulation of various spectral line distributions and cannot simultaneously perform both broadband and narrowband spectral radiometric calibration, resulting in low accuracy of ground radiometric calibration for space remote sensing cameras, a long and complex calibration process for both broadband and narrowband, and inability to conduct radiometric calibration tests across multiple spectral ranges. To address these challenges,a design method for a spectral radiometric calibration system based on a concave cylindrical grating with a pre-collimation and beam expansion system.Considering the field curvature characteristics of the concave cylindrical grating, a wedge-shaped field curvature compensation prism is designed. Additionally, the collimating and beam-expanding system is used to reduce the imaging field of view of the system, improving the spectral resolution of the concave cylindrical grating spectroscopic system. This enhancement doubles the spectral resolution of the entire system, from 5 nm to 2 nm. Finally, the system performance is tested. In the broadband mode, the system achieves color temperature simulations of 3 000 K, 6 400 K, and 9 000 K within the 500–900 nm spectral range, with a simulation error better than 5%. In the narrowband mode, the half-peak width of the system’s output beam is less than 3 nm. In the multispectral mode, the spectral simulation errors for equi-energy spectra are 1.1% in the 545–600 nm range, 2.5% in the 630–690 nm range, and 1.5% in the 680–725 nm range. This system meets the requirements for broadband and narrowband radiometric calibration and multifunctional testing and calibration of space cameras, attitude navigation systems, and remote sensing instruments.

参考文献

1 万志, 李葆勇, 刘则洵, 等. 测绘一号卫星相机的光谱和辐射定标[J]. 光学 精密工程201523(7): 1867-1873.
  WAN Z, LI B Y, LIU Z X, et al. Spectral and radiometric calibrations for mapping satellite-1 camera[J]. Optics and Precision Engineering201523(7): 1867-1873 (in Chinese).
2 CHANDER G, MARKHAM B L, HELDER D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment2009113(5): 893-903.
3 郑小兵. 高精度卫星光学遥感器辐射定标技术[J]. 航天返回与遥感201132(5): 36-43.
  ZHENG X B. High-accuracy radiometric calibration of satellite optical remote sensors[J]. Spacecraft Recovery & Remote Sensing201132(5): 36-43 (in Chinese).
4 QIN J X, LI X, MA X T, et al. Lightweight task coordination of LEO satellite cluster based on distributed reinforcement learning[C]?∥2022 4th International Conference on Artificial Intelligence Technologies and Applications. 2022: 012009.
5 WANG X, ZHANG Y L, WANG Z K. Research of reconfiguration technology for spacecraft cluster control system based on wireless network[C]∥ 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems. Piscataway: IEEE Press, 2017: 1548-1551.
6 HETTEL R O. Beam stability at light sources[C]∥ 12th U.S. International Conference on Synchrotron Radiation Instrumentation. 2001.
7 ZHAO W Q, YAN J Y, LIU H, et al. Characterization of the LED filament lamp for luminous intensity calibration[J]. Metrologia202360(2): 025004.
8 GESHWIND F, COIFMAN R R, FATELEY W G, et al. System and method for encoded spatio-spectral information processing: US2007263214A1[P].2007-11-15.
9 MACKINNON N, STANGE U, LANE P, et al. Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy[J]. Applied Optics200544(11): 2033-2040.
10 BROWN S W, RICE J P, NEIRA J E, et al. Spectrally tunable sources for advanced radiometric applications[J]. Journal of Research of the National Institute of Standards and Technology2006111(5): 401.
11 刘洪兴, 孙景旭, 刘则洵, 等. 氙灯和发光二极管作光源的积分球太阳光谱模拟器[J]. 光学 精密工程201220(7): 1447-1454.
  LIU H X, SUN J X, LIU Z X, et al. Design of integrating sphere solar spectrum simulator based on xenon lamp and LEDs[J]. Optics and Precision Engineering201220(7): 1447-1454 (in Chinese).
12 袁银麟, 徐骏, 翟文超, 等. 大孔径可调光谱积分球参考光源研制和检测[J]. 光学学报201333(7): 0712004.
  YUAN Y L, XU J, ZHAI W C, et al. Design and test of a spectrally tunable integrating sphere reference light source with large exit aperture[J]. Acta Optica Sinica201333(7): 0712004 (in Chinese).
13 刘洪兴, 任建伟, 刘则洵, 等. 基于LED的多色温多星等单星模拟器[J]. 光学学报201535(2): 0212003.
  LIU H X, REN J W, LIU Z X, et al. LED-based single star simulator with multi-color-temperature and multi-star-magnitude output[J]. Acta Optica Sinica201535(2): 0212003 (in Chinese).
14 ZHAI W C, ZHANG M, MENG F G, et al. Design of spectrally tunable calibration source based on Digital Micromirror Device (DMD)[C]∥International Symposium on Optoelectronic Technology and Application 2016. 2016.
15 MA S D, PAN Q, SHEN W M, et al. Spectrum synthesis for a spectrally tunable light source based on DMD-convex grating Offner configuration[C]∥ Eighth International Symposium on Advanced Optical Manufacturing and Testing Technology.2006.
16 徐达, 张国玉, 孙高飞, 等. 基于DMD光谱可调的星模拟器光源光学系统设计[J]. 光子学报201746(7): 0722002.
  XU D, ZHANG G Y, SUN G F, et al. Optical system design of star simulator light source with spectrum adjustable based on DMD[J]. Acta Photonica Sinica201746(7): 0722002 (in Chinese).
17 WANG X X, LI Z G. A spectrally tunable calibration source using Ebert-Fastie configuration[J]. Measurement Science and Technology201829(3): 035903.
18 徐达, 张国玉, 孙高飞. 改进Offner型凸面光栅光谱辐射定标光学系统设计[J]. 光学学报202040(8): 0822002.
  XU D, ZHANG G Y, SUN G F. Design of advanced Offner-type convex grating spectral radiation calibration optical system[J]. Acta Optica Sinica202040(8): 0822002 (in Chinese).
19 BEUTLER H G. The theory of the concave grating[J]. Journal of the Optical Society of America194535(5): 311.
20 NODA H, NAMIOKA T, SEYA M. Geometric theory of the grating[J]. Journal of the Optical Society of America197464(8): 1031-1036.
文章导航

/