流体力学与飞行力学

侧滑角对V型钝化唇口激波干扰结构的影响

  • 饶洛瑜 ,
  • 张涛 ,
  • 施崇广 ,
  • 朱呈祥 ,
  • 尤延铖
展开
  • 厦门大学 航空航天学院,厦门 361102

收稿日期: 2024-05-15

  修回日期: 2024-06-04

  录用日期: 2024-06-18

  网络出版日期: 2024-06-20

基金资助

国家自然科学基金(U20A2069);福建省自然科学基金(2023J01046)

Effects of sideslip angle on shock wave interference structure of V-shaped blunt leading edge

  • Luoyu RAO ,
  • Tao ZHANG ,
  • Chongguang SHI ,
  • Chengxiang ZHU ,
  • Yancheng YOU
Expand
  • School of Aerospace Engineering,Xiamen University,Xiamen 361102,China

Received date: 2024-05-15

  Revised date: 2024-06-04

  Accepted date: 2024-06-18

  Online published: 2024-06-20

Supported by

National Natural Science Foundation of China(U20A2069);Natural Science Foundation of Fujian Province(2023J01046)

摘要

针对三维内转进气道V型唇口处复杂激波干扰问题,通过数值模拟和理论分析研究了侧滑角对V型唇口激波干扰结构的影响机理。重点考察了在马赫数为6、侧滑角为0°~8°条件下,半径比R/r=4.5的V型钝化唇口的激波干扰类型,以及壁面热流峰值和压力峰值(热/力峰值)的变化趋势。数值模拟结果显示,在波系干扰结构方面,该模型上的主激波干扰以及迎风侧的二次激波干扰类型不会随着侧滑角的增大而改变,而背风侧的二次激波干扰类型出现了从规则反射转变为马赫反射的现象。为了有效预测二次激波干扰类型的转变边界,基于无黏激波理论,建立了侧滑条件下V型钝化唇口的激波干扰理论分析方法。发现随着侧滑角的增大,迎风侧和背风侧的二次激波干扰区域的流动参数分别会向低于von Neumann边界和高于脱体边界的方向转变。在壁面热流和压力方面,侧滑角的变化会导致迎风侧和背风侧的热/力峰值发生改变,并呈现不同的变化规律。理论和数值仿真的结果显示,透射激波强度和热/力峰值随侧滑角的变化趋势基本一致。这表明侧滑角变化所引起的透射激波强度的改变,是导致迎风侧与背风侧的热/力峰值随侧滑角增大而呈现不同变化规律的关键因素。该研究可对寻求V型唇口处结构设计所需的气动热/力载荷提供参考。

本文引用格式

饶洛瑜 , 张涛 , 施崇广 , 朱呈祥 , 尤延铖 . 侧滑角对V型钝化唇口激波干扰结构的影响[J]. 航空学报, 2025 , 46(2) : 130681 -130681 . DOI: 10.7527/S1000-6893.2024.30681

Abstract

The impact mechanism of sideslip angle on shock wave interference structures at the V-Shaped Blunt Leading Edge (VSBLE) of a three-dimensional inward-turning inlet is studied through numerical simulation and theoretical analysis. The focus is on examining the types of shock wave interference at the VSBLE with a radius ratio of R/r = 4.5 and the variation trends of peak wall heat flux and pressure under conditions of Mach number 6 and sideslip angles ranging from 0° to 8°. Numerical simulation results show that regarding wave system interference structures, the types of primary shock interference and secondary shock interference on the windward side of the model do not change with the increase of the sideslip angle, whereas the type of secondary shock interference on the leeward side transitions from regular reflection to Mach reflection. To effectively predict the transition boundary of the secondary shock interference type, a theoretical analysis method of shock wave interference at the VSBLE under sideslip conditions is established based on the inviscid shock theory. It is found that with the increase of the sideslip angle, the flow parameters in the secondary shock interference regions on the windward and leeward sides shift towards values lower than the von Neumann boundary and higher than the detachment boundary, respectively. In terms of wall heat flux and pressure, changes in the sideslip angle lead to alterations in the heating/pressure peak values on the windward and leeward sides, displaying different variation patterns. The results from both theoretical and numerical simulations indicate that the variations of transmitted shock intensity and heating/pressure peak values with changes of sideslip angle are generally consistent. This shows that the change in transmitted shock intensity caused by variations in the sideslip angle is the key factor leading to different variation patterns in the heating/pressure peak values on the windward and leeward sides. This study can provide a reference for the aerodynamic heating/pressure load required for structural design at the VSBLE.

参考文献

1 GRASSO F, PURPURA C, CHANETZ B, et al. Type III and type IV shock/shock interferences: Theoretical and experimental aspects[J]. Aerospace Science and Technology20037(2): 93-106.
2 WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal198927(11): 1557-1565.
3 罗振兵, 谢玮, 解旭祯, 等. 激波及其干扰主动流动控制研究进展[J]. 航空学报202344(15): 529002.
  LUO Z B, XIE W, XIE X Z, et al. Research progress of active flow control of shock wave and its interaction[J]. Acta Aeronautica et Astronautica Sinica202344(15): 529002 (in Chinese).
4 SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power199915(3): 408-416.
5 GRIPON E, MACH E. Ueber den Verlauf der Funkenwellen in der Ebene und in Raume (étude des mouvements vibratoires engendrés dans l’air par des étincelles électriques); Mémoires de l’Académie des Sciences de Vienne, Mai et juillet 1878[J]. Journal De Physique Théorique et Appliquée18798(1): 94-100.
6 VON NEUMANN J. Oblique reflection of shocks:Explosives research report Rep.12[R]. 1943.
7 VON NEUMANN J. Refraction, intersection and reflection of shock waves: NAVORD report 203-245[R]. 1943.
8 KAWAMURA R, SAITO H. Reflection of shock waves-1 pseudo-stationary case[J]. Journal of the Physical Society of Japan195611(5): 584-592.
9 EDNEY B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock: NSA-22-049015-115 [R]. Wahington, D.C.:Office of Scientific and Technical Information, 1968.
10 BEN-DOR G, VASILEV E I, ELPERIN T, et al. Self-induced oscillations in the shock wave flow pattern formed in a stationary supersonic flow over a double wedge[J]. Physics of Fluids200315(12): L85-L88.
11 谢玮, 罗振兵, 周岩, 等. 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报202445(7):128813.
  XIE W, LUO Z B, ZHOU Y, et al. Experimental study on double wedge shock interaction control using steady jet in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica2024. 45(7): 128813 (in Chinese).
12 DRUGUET M C, CANDLER G V, NOMPELIS I. Effects of numerics on navier-stokes computations of hypersonic double-cone flows[J]. AIAA Journal200543(3): 616-623.
13 TUMUKLU O, LEVIN D A, THEOFILIS V. Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach[J]. Physics of Fluids201830(4): 046013.
14 PANARAS A G, DRIKAKIS D. High-speed unsteady flows around spiked-blunt bodies[J]. Journal of Fluid Mechanics2009632: 69-96.
15 OLEJNICZAK J, WRIGHT M J, CANDLER G V. Numerical study of inviscid shock interactions on double-wedge geometries[J]. Journal of Fluid Mechanics1997352: 1-25.
16 程剑锐, 施崇广, 瞿丽霞, 等. 二维弯曲激波/湍流边界层干扰流动理论建模[J]. 航空学报202243(9): 125993.
  CHENG J R, SHI C G, QU L X, et al. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica202243(9): 125993 (in Chinese).
17 ZHONG X L. Application of essentially nonoscillatory schemes to unsteady hypersonic shock-shock interference heating problems[J]. AIAA Journal199432(8): 1606-1616.
18 YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011.
19 GOLLAN R J, SMART M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power201329(4): 832-838.
20 XIAO F S, LI Z F, ZHANG Z Y, et al. Hypersonic shock wave interactions on a V-shaped blunt leading edge[J]. AIAA Journal201856(1): 356-367.
21 WANG D X, LI Z F, ZHANG Z Y, et al. Unsteady shock interactions on V-shaped blunt leading edges[J]. Physics of Fluids201830(11): 116104.
22 LI Z F, ZHANG Z Y, WANG J, et al. Pressure-heat flux correlations for shock interactions on V-shaped blunt leading edges[J]. AIAA Journal201957(10): 4588-4592.
23 ZHANG Z Y, LI Z F, YANG J M. Transitions of shock interactions on V-shaped blunt leading edges[J]. Journal of Fluid Mechanics2021912: A12.
24 张英杰, 李祝飞, 张志雨, 等. 侧滑角对V字形钝化前缘激波振荡特性影响[J]. 推进技术202243(11): 76-88.
  ZHANG Y J, LI Z F, ZHANG Z Y, et al. Effects of sideslip angle on shock oscillations of V-shaped blunt leading edge[J]. Journal of Propulsion Technology202243(11): 76-88 (in Chinese).
25 KANG D K, YAN C, LI Z H, et al. Shock interactions and heating predictions on a V-shaped blunt leading edge at Mach 6-12[J]. Physics of Fluids202335(12): 126105.
26 ZHANG T, CHENG J R, SHI C G, et al. Mach reflection of three-dimensional curved shock waves on V-shaped blunt leading edges[J]. Journal of Fluid Mechanics2023975: A45.
27 LI S, YAN C, KANG D K, et al. Investigation of flow control methods for reducing heat flux on a V-shaped blunt leading edge under real gas effects[J]. Physics of Fluids202335(3): 036113.
28 KANG D K, YAN C, LIU S J, et al. Modelling and shock control for a V-shaped blunt leading edge[J]. Journal of Fluid Mechanics2023968: A15.
29 LIU S J, YAN C, KANG D K, et al. Opposing jets for heat flux reduction and uncertainty analysis on a V-shaped blunt leading edge[J]. Aerospace Science and Technology2023138: 108353.
30 张志雨. V字形钝前缘激波干扰及气动热/力特性研究[D]. 合肥: 中国科学技术大学, 2020: 15-16, 29.
  ZHANG Z Y. Study on shock wave interference and aerodynamic thermal/mechanical characteristics of V-shaped blunt leading edge[D].Hefei: University of Science and Technology of China, 2020: 15-16, 29 (in Chinese).
31 SINCLAIR J, CUI X. A theoretical approximation of the shock standoff distance for supersonic flows around a circular cylinder[J]. Physics of Fluids201729(2): 026102.
32 GAO B, WU Z N. A study of the flow structure for Mach reflection in steady supersonic flow[J]. Journal of Fluid Mechanics2010656: 29-50.
33 KEYES W, HAINS F D. Analytical and experimental studies of shock interference heating in hypersonic flows: 19730016556[R]. Washington, D. C.: NASA, 1973.
34 BEN-DOR G. Shock wave reflection phenomena[M]. New York: Springer, 1992.
35 MARKARIAN C F. Heat transfer in shock wave-boundary layer interaction regions[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
文章导航

/