透过NGAD的可控性评估准则研究
收稿日期: 2024-01-02
修回日期: 2024-03-04
录用日期: 2024-06-03
网络出版日期: 2024-06-17
Controllability evaluation criteria research based on NGAD
Received date: 2024-01-02
Revised date: 2024-03-04
Accepted date: 2024-06-03
Online published: 2024-06-17
近年来,美国迅速推进“下一代空中主宰”(NGAD)项目发展,以期适应未来的高端信息化战争,夺取制空优势。从曝光的概念图看,各种NGAD方案均采用翼身融合设计,取消了传统的平尾和垂尾,以追求极致的隐身性能,但却给飞机的纵、航向飞行控制带来了严峻挑战。本文透过NGAD布局详细探讨了可能存在的重心焦点匹配、航向静不稳定、航向控制效能等方面的可控性问题,并针对性提出了放宽最大低头设计边界、极限迎角限制能力、航向倍幅时间等可控性评估准则,可为此类飞机的总体布局提供设计支撑。
关键词: 下一代空中主宰(NGAD); 放宽静稳定性; 倍幅时间; 大迎角; 航向可控性
陶呈纲 , 林传健 , 铁钰嘉 , 范淑娜 , 梁天骄 . 透过NGAD的可控性评估准则研究[J]. 航空学报, 2024 , 45(17) : 530083 -530083 . DOI: 10.7527/S1000-6893.2024.30083
In recent years, the United States has rapidly promoted the development of the “Next Generation Air Dominance” (NGAD) program, in order to adapt to future high-end information warfare and seize air supremacy. Judging from the exposed conceptual map, various NGAD solutions adopt the wing-body fusion design, canceling the traditional flat tail and vertical tail to pursue the ultimate stealth performance, which however brings severe challenges to the longitudinal and yaw flight control of the aircraft. In this paper, the controllability problems of center of gravity focus matching, yaw static instability, and yaw control efficiency are discussed based on the NGAD layout, and the controllability evaluation criteria such as relaxing the design boundary of the maximum head bow, the limiting ability of the ultimate angle of attack, and the yaw doubling time are proposed, which can provide design support for the overall layout of aircraft with this layout.
1 | 车竞, 何开锋, 钱炜祺. 制空型无人机的关键技术、气动布局及特性[J]. 空气动力学学报, 2017, 35(1): 13-19, 26. |
CHE J, HE K F, QIAN W Q. Key technique and aerodynamic configuration characteristic of UCAV with command of the air[J]. Acta Aerodynamica Sinica, 2017, 35(1): 13-19, 26 (in Chinese). | |
2 | 郭涛, 陈朝, 程瀚, 等. 美军的2030年制空优势项目: “下一代空中主宰” (NGAD)项目发展启示[J]. 航天电子对抗, 2022, 38(5): 50-53, 64. |
GUO T, CHEN Z, CHENG H, et al. Development of next-generation air dominance project of U.S.military for air superiority 2030[J]. Aerospace Electronic Warfare, 2022, 38(5): 50-53, 64 (in Chinese). | |
3 | NEWDICK T, ROGOWAY T. New next generation air dominance ‘Fighter’ renderings from lockheed[EB/OL].(2022-10-26)[2024-07-02]. . |
4 | MAREEN M. Next generation air dominance programme[EB/OL].(2024-3-8)[2024-07-02]. . |
5 | SANDHU S. What is USA NGAD (Next Generation Air Dominance) Programme.[EB/OL].(2023-3-16)[2024-07-02]. . |
6 | GREG HADLEY G and TIRPAK J A. In secret solicitation, air force starts bidding for NGAD to replace F-22[EB/OL]. (2023-5-18)[2024-07-02]. . |
7 | ANDERSON D C, BERGER R L, HESS J R Jr. Maneuver load control and relaxed static stability applied to aContemporary fighter aircraft[J]. Journal of Aircraft, 1973, 10(2): 112-120. |
8 | CHAMBERS J R, GRAFTON S B. Aerodynamic characteristics of airplanes at high angles of attack[C]∥AGARD/VKI Lecture Series on Aerodynamic Inputs for Problems in Aircraft Dynamics. Rhode-St-Genese, Belgium: 1977. |
9 | 杨艺. 静不稳定飞翼无人机机动飞行控制技术研究[D]. 南京: 南京航空航天大学, 2015. |
YANG Y. Resrarch on maneuver flight control technology for static unstable flying-wing unmanned aerial vehichle[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
10 | 于冲, 王旭, 陈鹏, 等. 三角翼无尾布局全动翼尖的操纵性能研究[J]. 航空学报, 2012, 33(11): 1975-1983. |
YU C, WANG X, CHEN P, et al. Study of control characteristics for all moving wing tips in delta wing tailless configuration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1975-1983 (in Chinese). | |
11 | 孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 124080. |
SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124080 (in Chinese). | |
12 | WEISSMAN R. Status of design criteria for predicting departure characteristics and spin susceptibility[J]. Journal of Aircraft, 1975, 12(12): 989-993. |
13 | LUTZE F H, DURHAM W C, MASON W H. Unified development of lateral-directional departure criteria[J]. Journal of Guidance Control Dynamics, 1996, 19(2): 489-493. |
14 | WEISSMAN R. Criteria for predicting spin susceptibility of fighter-type aircraft[R].Ohio: United States Air Force, 1972. |
15 | 王启.各类预测偏离与尾旋敏感性判据计算[J].飞行试验,1990(2): 21-26. |
WANG Q. Calculation of various prediction deviation and tailspin sensitivity criteria[J]. Flight Test, 1990(2): 21-26 (in Chinese). | |
16 | ADDINGTON G A, MYATT J H. Control-surface deflection effects on the innovative control effectors (ICE 101) design[M]. Air Vehicles Directorte, Air Force Research Laboratory, Air Force Materiel Command, 2000. |
17 | 李建平,罗欣,牛福祥. 战斗机最小下俯力矩指标要求研究[C]∥ 中国航空学会飞行力学与飞行试验专业委员会第十九届学术交流会论文集.北京:中国航空学会, 2003:57-61. |
LI J P, LUO X, NIU F X. Minimum descending torque index requirement of fighter aircraft[C]∥ The 19th Academic Meeting of Flight Mechanics and Flight Test Committee of Chinese Society of Aeronautics and Astronautics. Beijing: Chinese Society of Aeronautics and Astronautics, 2003: 57-61 (In Chinese). | |
18 | HARRIS J J. F-35 flight control law design, development and verification[C]∥2018 Aviation Technology, Integration, and Operations Conference. 2018: 3516. |
19 | 陈晓明, 孙绍山, 陶呈纲, 等. 放宽静稳定度飞机时间延迟稳定边界[J]. 航空学报, 2020, 41(6): 523487. |
CHEN X M, SUN S S, TAO C G, et al. Time delay stability boundary on relaxed static stability aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523487 (in Chinese). | |
20 | SIMON J, BLAKE W, MULTHOPP D. Control concepts for a vertical tailless fighter[C]∥ Proceedings of the Aircraft Design, Systems, and Operations Meeting. Reston: AIAA, 1993. |
/
〈 |
|
〉 |