小型无人直升机建模与鲁棒飞行控制
收稿日期: 2024-06-05
修回日期: 2024-06-12
录用日期: 2024-06-13
网络出版日期: 2024-06-17
基金资助
黑龙江省自然科学基金优秀青年基金(YQ2022F012);中央高校基本科研业务费专项资金(HIT.OCEF.2023010)
Modeling and robust flight control of small-scale unmanned helicopter
Received date: 2024-06-05
Revised date: 2024-06-12
Accepted date: 2024-06-13
Online published: 2024-06-17
Supported by
Natural Science Foundation of Heilongjiang Province of China(YQ2022F012);The Fundamental Research Funds for the Central Universities(HIT.OCEF.2023010)
针对小型无人直升机的建模与鲁棒飞行控制问题,考虑飞行过程中存在的测量噪声、风场扰动以及系统参数变化,提出了一种将H∞ 混合灵敏度控制与μ综合相结合的串级鲁棒飞行控制框架。首先,构建小型无人直升机非线性动力学模型,包含其推力迭代求解算法、主旋翼挥舞动力学,兼顾模型真实性和计算复杂度。其次,在悬停模态下线性化,为横、纵向通道设计Notch滤波器改善开环欠阻尼特性,降低其控制难度。随后,在鲁棒飞行控制系统中,以保守性较低的μ综合方法实现内环量的快速响应,以H∞ 混合灵敏度控制抑制干扰对外环量影响。最后,在非标称情形下的仿真试验显示,相较于PID控制,本文设计的鲁棒飞行控制系统具备更稳定的控制效果,证明了其有效性和优越性。
张培康 , 郭继峰 , 颜鹏 . 小型无人直升机建模与鲁棒飞行控制[J]. 航空学报, 2024 , 45(S1) : 730797 -730797 . DOI: 10.7527/S1000-6893.2024.30797
To address the modeling and robust flight control problem of small-scale unmanned helicopters, a cascade robust flight control framework combining H∞ mixed sensitivity control and μ synthesis is proposed, considering the measurement noise, wind disturbance, and system parameter perturbation during flight. Firstly, a nonlinear dynamics model of the small-scale unmanned helicopter, including its thrust iterative solution algorithm and main rotor’s flapping dynamics, is constructed, taking into account the model authenticity and computational complexity. Secondly, the model is linearized at the hovering mode, and Notch filters are designed for the lateral and longitudinal channels to improve the open-loop underdamping characteristics, so as to reduce its control difficulty. Subsequently, in the robust flight control system, fast response of the inner-loop states is realized by the less conservative μ synthesis method, and the influence of disturbances on the outer-loop states is suppressed by H∞ mixed sensitivity control. Finally, simulation experiments in the non-nominal case shows that the robust flight control system designed in this paper has more stable control performance compared with the PID control system, proving its effectiveness and superiority.
1 | ZHAO C, GUO L. PID controller design for second order nonlinear uncertain systems[J]. Science China Information Sciences, 2017, 60(2): 022201. |
2 | KUEHN C. Multiple time scale dynamics[M]. Cham: Springer Cham, 2015. |
3 | METTLER B, TISCHLER M B, KANADE T. System identification modeling of a small-scale unmanned rotorcraft for flight control design[J]. Journal of the American Helicopter Society, 2002, 47(1): 50-63. |
4 | KIM S K. Modeling, identification, and trajectory planning for a model-scale helicopter[D]. Ann Arbor: University of Michigan, 2001. |
5 | MIWA M, UEMURA S, ISHIHARA Y, et al. Evaluation of quad ducted-fan helicopter[J]. International Journal of Intelligent Unmanned Systems, 2013, 1(2): 187-198. |
6 | VIJAYA KUMAR M, SAMPATH P, SURESH S, et al. Design of a stability augmentation system for a helicopter using LQR control and ADS-33 handling qualities specifications[J]. Aircraft Engineering and Aerospace Technology, 2008, 80(2): 111-123. |
7 | BRIDGES D, HORN J, RAY A. Model-following control of a military helicopter with damage mitigation: AIAA-2005-6347[R]. Reston: AIAA, 2005. |
8 | KADMIRY B, DRIANKOV D. A fuzzy gain-scheduler for the attitude control of an unmanned helicopter[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(4): 502-515. |
9 | LEE J, SEO J, CHOI J. Output feedback control design using extended high-gain observers and dynamic inversion with projection for a small scaled helicopter[J]. Automatica, 2021, 133: 109883. |
10 | MARCONI L, NALDI R. Robust full degree-of-freedom tracking control of a helicopter[J]. Automatica, 2007, 43(11): 1909-1920. |
11 | LEE C T, TSAI C C. Improvement in trajectory tracking control of a small scale helicopter via backstepping[C]∥ 2007 IEEE International Conference on Mechatronics. Piscataway: IEEE Press, 2007: 1-6. |
12 | XIAN B, GUO J C, ZHANG Y. Adaptive backstepping tracking control of a 6-DOF unmanned helicopter[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 19-24. |
13 | BIN X, GUO J C, ZHANG Y, et al. Sliding mode tracking control for miniature unmanned helicopters[J]. Chinese Journal of Aeronautics, 2015, 28(1): 277-284. |
14 | FANG X, WU A G, SHANG Y J, et al. A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance[J]. Nonlinear Dynamics, 2016, 83(1): 1053-1068. |
15 | HALBE O, OZA H. Robust continuous finite-time control of a helicopter in turbulence[J]. IEEE Control Systems Letters, 2021, 5(1): 37-42. |
16 | ABBEEL P, COATES A, QUIGLEY M, et al. An application of reinforcement learning to aerobatic helicopter flight[M]∥ Advances in Neural Information Processing Systems 19. Pasadena: The MIT Press, 2007: 1-8. |
17 | XIAN B, ZHANG X, ZHANG H N, et al. Robust adaptive control for a small unmanned helicopter using reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7589-7597. |
18 | Application of multivariable control theory to aircraft control laws: ADA315259[R]. Minneapolis: Honeywell Inc, 1996. |
19 | MAMMAR S, DUC G. Loop shaping H∞ design: Application to the robust stabilization of a helicopter[J]. Control Engineering Practice, 1993, 1(2): 349-356. |
20 | LA CIVITA M, PAPAGEORGIOU G, MESSNER W, et al. Design and flight testing of a high-bandwidth H-infinity loop shaping controller for a robotic helicopter: AIAA-2002-4836[R]. Reston: AIAA, 2002. |
21 | 曾丽兰. 基于H∞回路成形的无人直升机非脆弱鲁棒飞行控制研究[D]. 南京: 南京航空航天大学, 2006. |
ZENG L L. Unmanned helicopter non-fragile robust flight control research based on H∞ loop shaping[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). | |
22 | NYGAARD NIELSEN A K. Helicopter dynamics and robust control[D]. Albany: State University of New York, 2005. |
23 | 郎哲彦. 基于模态切换的无人直升机双回路鲁棒控制器的研究[D]. 天津: 天津大学, 2012. |
LANG Z Y. Research of dual-loop robust controller based on multi-mode transition for unmanned helicopter[D].Tianjin: Tianjin University, 2012 (in Chinese). | |
24 | HYUNCHUL S. Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles[D]. Berkeley: University of California, Berkeley, 2000: 126-138. |
25 | MOLLOV L, KRALEV J, SLAVOV T, et al. μ-synthesis and hardware-in-the-loop simulation of miniature helicopter control system[J]. Journal of Intelligent & Robotic Systems, 2014, 76(2): 315-351. |
26 | Hilbert K B. A mathematical model of the UH-60 helicopter: NASA-TM-85890[R]. Washington, D.C.: NASA, 1984. |
/
〈 |
|
〉 |