首届空天前沿大会优秀论文专栏

多级无导叶对转涡轮尾迹/激波转转级间非定常干涉对叶片气动载荷的影响

  • 朱志豪 ,
  • 隋秀明 ,
  • 浦健 ,
  • 郝龙 ,
  • 赵巍 ,
  • 赵庆军
展开
  • 1.中国科学院 工程热物理研究所,北京 100190
    2.中国科学院 轻型涡轮动力全国重点实验室,北京 100190
    3.中国科学院大学 航空宇航学院,北京 100049
    4.中国科学院 工程热物理研究所 分布式冷热电联供系统北京市重点实验室,北京 100190
.E-mail: zhaoqingjun@iet.cn

收稿日期: 2024-04-23

  修回日期: 2024-04-28

  录用日期: 2024-05-31

  网络出版日期: 2024-06-17

基金资助

国家自然科学基金(52336002);国家科技重大专项(J2019-Ⅱ-0011-0031)

Aerodynamic load of multistage vaneless counterrotating turbine under wake/shock rotor/rotor interactions

  • Zhihao ZHU ,
  • Xiuming SUI ,
  • Jian PU ,
  • Long HAO ,
  • Wei ZHAO ,
  • Qingjun ZHAO
Expand
  • 1.Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China
    2.National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine,Chinese Academy of Sciences,Beijing 100190,China
    3.School of Aeronautics and Astronautics,University of Chinese Academy of Sciences,Beijing 100049,China
    4.Beijing Key Laboratory of Distributed Combined Cooling Heating and Power System,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China
E-mail: zhaoqingjun@iet.cn

Received date: 2024-04-23

  Revised date: 2024-04-28

  Accepted date: 2024-05-31

  Online published: 2024-06-17

Supported by

National Natural Science Foundation of China(52336002);National Science and Technology Major Project(J2019-Ⅱ-0011-0031)

摘要

为研究多级无导叶对转涡轮上游叶片尾迹/激波对下游转子气动载荷分布的影响,采用非定常数值模拟方法分析了复杂级间流动对下游叶片表面压力脉动的影响规律。研究表明,多级无导叶对转涡轮取消全部的导向叶片,没有导叶提供预旋的第1级动叶具有吸力面无遮盖段长的特点。吸力面长无遮盖段与相邻叶片尾迹形成类似拉瓦尔喷管的缩扩型尾迹流道,在转转级间非定常干涉作用下,第1级动叶出口马赫数降低,因而在第1级动叶吸力面近尾缘处已有外伸激波的基础上形成了1个新压缩波(尾迹流道激波)。由于尾迹流道激波传播方向与第1级动叶旋转方向相同,在1个周期内尾迹流道激波仅在第2级动叶吸力面进行扫掠。内伸激波反射波从第2级动叶吸力面扫掠至压力面且速度相比尾迹流道激波较快,1个周期内的特定时刻,内伸激波反射波与尾迹流道激波同时作用于第2级动叶吸力面28.8%轴向位置,导致该位置压力脉动峰值显著上升,其峰值达到外伸激波扫掠导致压力脉动峰值的81.2%。外伸激波是引起第2级动叶叶表压力载荷变化的主要因素,其主要扰动区域为第2级动叶前缘,在1个周期内在该区域引起的最大压力脉动峰值达到压力时均值的47.7%。受到多道内伸激波反射波与尾迹流道激波的耗散作用,第1级动叶尾迹强度显著降低,因而其对第2级动叶叶表气动载荷的影响较小。频谱分析结果表明,由于尾迹流道激波与内伸激波反射波的叠加作用效果与外伸激波相近,第2级动叶叶表压力脉动的主频是外伸激波扫掠频率的2倍。

本文引用格式

朱志豪 , 隋秀明 , 浦健 , 郝龙 , 赵巍 , 赵庆军 . 多级无导叶对转涡轮尾迹/激波转转级间非定常干涉对叶片气动载荷的影响[J]. 航空学报, 2024 , 45(24) : 630582 -630582 . DOI: 10.7527/S1000-6893.2024.30582

Abstract

To investigate the impact of wake/shock on the aerodynamic load distribution of downstream turbine blades in a multi-stage vaneless counter-rotating turbine, unsteady numerical simulation was utilized to analyze the influence of complex inter-stage flow on pressure fluctuation on the downstream blade surfaces. The study reveals that in the multi-stage vaneless counter-rotating turbine, all guide vanes are eliminated, resulting in suction side of the first-stage moving blade with an extended uncovered section. The extended uncovered suction side forms a converging-diverging wake flow passage resembling a Laval nozzle in interaction with the wake from adjacent blades. Under the unsteady interaction between the stages, the exit Mach number of the first-stage moving blade decreases, leading to the formation of a new compression wave (wake flow passage shock) near the trailing edge of the suction side of the first-stage moving blade superimposed on the existing suction side trailing edge shock. At specific moments within one cycle, both the reflected shock and the wake flow passage shock act on the 28.8% axial position on the suction side of the second-stage moving blade leading to a significant increase in pressure fluctuation peak value at that location. The peak value reaches 81.2% of the peak value induced by the suction side trailing edge shock sweeping, indicating that the suction side trailing edge shock is the primary factor causing pressure load variations on the blade surface of the second-stage moving blade. The main perturbation region for pressure fluctuation induced by the suction side trailing edge shock wave is the leading edge of the second-stage moving blade, with the maximum peak value of pressure fluctuation in this region within one cycle reaching 47.7% of the mean pressure. Due to the dissipation effects of the reflected shock of pressure side trailing edge shock and wake flow passage shock, the wake strength of the first-stage moving blade significantly decreases, resulting in a minor impact on the aerodynamic load distribution on the blade surface of the second-stage moving blade. Frequency analysis results indicate that due to the combined effects of the wake flow passage shock and the reflected shock of pressure side trailing edge shock, the main frequency of pressure fluctuation on the blade surface of the second-stage moving blade is twice the sweeping frequency of the suction side trailing edge shock.

参考文献

1 周庆晖, 赵巍, 隋秀明, 等. 零预旋涡轮动叶吸力面无遮盖段内凹型线激波损失抑制方法研究[J]. 工程热物理学报202243(4): 939-944.
  ZHOU Q H, ZHAO W, SUI X M, et al. A shock loss reduction method for a zero inlet swirl turbine rotor using a suction side concave profile[J]. Journal of Engineering Thermophysics202243(4): 939-944 (in Chinese).
2 张磊. 超高负荷跨音速涡轮气动设计理论及其非定常流动特性研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2011.
  ZHANG L. Investigation of aerodynamic design method and unsteady flow characteristics of ultra-highly loaded turbine[D]. Beijing: Institute of Engineering Thermophysics,Chinese Academy of Sciences, 2011 (in Chinese).
3 韩乐, 王延荣. 转子叶片气弹稳定性与强迫响应分析[J]. 航空发动机202147(4): 82-90.
  HAN L, WANG Y R. Analysis of aeroelastic stability and forced response of rotor blades[J]. Aeroengine202147(4): 82-90 (in Chinese).
4 洪杰, 张大义, 陈璐璐. 气流激励下的叶片高周疲劳寿命研究的发展[J]. 航空动力学报200924(3): 652-661.
  HONG J, ZHANG D Y, CHEN L L. Review on investigation of high cycle fatigue failures for the aero engine blade[J]. Journal of Aerospace Power200924(3): 652-661 (in Chinese).
5 ZHAO B, QI M X, SUN H, et al. A comprehensive analysis on the structure of groove-induced shock waves in a linear turbine[J]. Aerospace Science and Technology201987: 331-339.
6 DE′NOS R, ARTS T, PANIAGUA G, et al. Investigation of the unsteady rotor aerodynamics in a transonic turbine stage[J]. Journal of Turbomachinery2001123(1): 81-89.
7 杨策, 刘尚涛, 老大中, 等. 可调导叶向心涡轮转子叶片压力波动激励机制[J]. 工程热物理学报201435(1): 38-41.
  YANG C, LIU S T, LAO D Z, et al. Variable guide vanes radial turbine blade surface pressure fluctuation excitation mechanism[J]. Journal of Engineering Thermophysics201435(1): 38-41 (in Chinese).
8 LIU J, QIAO W Y, DUAN W H. Effect of bowed/leaned vane on the unsteady aerodynamic excitation in transonic turbine[J]. Journal of Thermal Science201928(1): 133-144.
9 季路成, 黄海波, 陈江, 等. 涡轮中的激波/叶排相互作用[J]. 工程热物理学报200223(2): 163-166.
  JI L C, HUANG H B, CHEN J, et al. Shock wave/blade interaction in transonic turbine[J]. Journal of Engineering Thermophysics200223(2): 163-166 (in Chinese).
10 PENG W, REN X D, LI X S, et al. Influence of position of intake struts on unsteady load and vibration of first-stage rotor[J]. Machines202210(11): 1096.
11 MAO X C, LIU B. A numerical study on the unsteady effect of axial spacing on the performance in a contra-rotating axial compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2017231(14): 2598-2609.
12 QU X, ZHANG Y J, LU X G, et al. Unsteady influences of blade loading distribution on secondary flow of ultra-high-lift LPT[J]. Aerospace Science and Technology202096: 105550.
13 赵庆军, 王会社, 赵晓路, 等. 无导叶对转涡轮三维流场的非定常数值模拟[J]. 工程热物理学报200627(1): 35-38.
  ZHAO Q J, WANG H S, ZHAO X L, et al. Numerical analysis of 3-d unsteady flow in a vaneless counter-rotating turbine[J]. Journal of Engineering Thermophysics200627(1): 35-38 (in Chinese).
14 ZHAO W, WU B, XU J Z. Aerodynamic design and analysis of a multistage vaneless counter-rotating turbine[J]. Journal of Turbomachinery2015137(6): 061008.
15 BIAN X T, WANG Q S, SU X R, et al. Interaction mechanisms of shock waves with the boundary layer and wakes in a highly-loaded NGV using hybrid RANS/LES[J]. Chinese Journal of Aeronautics202033(1): 149-160.
16 肖大启, 郑赟, 杨慧. 轴向间距对转子叶片气动激励的影响[J]. 航空动力学报201227(10): 2307-2313.
  XIAO D Q, ZHENG Y, YANG H. Effect of axial spacing on aerodynamic excitation of rotor blade[J]. Journal of Aerospace Power201227(10): 2307-2313 (in Chinese).
17 LAUMERT B, MA?RTENSSON H, FRANSSON T H. Investigation of unsteady aerodynamic blade excitation mechanisms in a transonic turbine stage-part II: Analytical description and quantification[J]. Journal of Turbomachinery2002124(3): 419-428.
18 LAUMERT B, MA?RTENSSON H, FRANSSON T H. Investigation of unsteady aerodynamic blade excitation mechanisms in a transonic turbine stage-part I: Phenomenological identification and classification[J]. Journal of Turbomachinery2002124(3): 410-418.
19 高丽敏, 苗芳, 李瑞宇, 等. 动/动干涉效应对叶片非定常负荷的影响[J]. 航空学报201435(7): 1874-1881.
  GAO L M, MIAO F, LI R Y, et al. Effect of rotor/rotor interactions on blades unsteady loading[J]. Acta Aeronautica et Astronautica Sinica201435(7): 1874-1881 (in Chinese).
20 邹正平, 叶建, 张永新, 等. 非定常流动对叶片表面负荷分布影响的数值模拟研究[J]. 燃气涡轮试验与研究200619(1): 21-26.
  ZOU Z P, YE J, ZHANG Y X, et al. Numerical simulation of unsteady flow effects on turbine blade loading distributions[J]. Gas Turbine Experiment and Research200619(1): 21-26 (in Chinese).
文章导航

/