流体力学与飞行力学

Bump进气道超声速稳定工作机制

  • 朱宇 ,
  • 程健慧 ,
  • 陈诚 ,
  • 黄河峡 ,
  • 谭慧俊
展开
  • 1.航空工业沈阳飞机设计研究所,沈阳 110035
    2.南京航空航天大学 能源与动力学院,南京 210016
.E-mail: huanghexia@nuaa.edu.cn

收稿日期: 2024-03-18

  修回日期: 2024-04-30

  录用日期: 2024-06-06

  网络出版日期: 2024-06-17

基金资助

先进航空动力创新工作站项目(HKCX2022-01-027);国家自然科学基金(12272177);青年托举人才工程项目(2021-JCJQ-QT-064)

Mechanism of Bump inlet stable working at supersonic speed

  • Yu ZHU ,
  • Jianhui CHENG ,
  • Cheng CHEN ,
  • Hexia HUANG ,
  • Huijun TAN
Expand
  • 1.AVIC Shenyang Aircraft Design and Research Institute,Shenyang 110035,China
    2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2024-03-18

  Revised date: 2024-04-30

  Accepted date: 2024-06-06

  Online published: 2024-06-17

Supported by

Project of Advanced Jet Propulsion Innovation Center(HKCX2022-01-027);National Natural Science Foundation of China(12272177);Young Talents Scholar Lift Project(2021-JCJQ-QT-064)

摘要

为确保超声速Bump进气道在全包线范围内与发动机高效匹配,探讨了提升其稳定工作裕度的主导机制。以四唇缘前掠外罩Bump进气道为研究对象,分析了其在设计马赫数下从超临界到亚临界工况的三维流动结构演化。研究结果表明,在小流量(或高反压)条件下,前掠外罩与锥导鼓包相结合的进气道压缩面上,正激波/边界层干扰产生三维分离涡流,并将涡流排移至进口外部。相比之下,相同前掠外罩与平面楔组合的进气道在小流量条件下,分离流呈现出“准二维”流态且大部分被吸入至进气道内部,其稳定裕度较鼓包进气道窄。因此,产生三维分离涡流,并将其排移出进口是提升Bump进气道气动性能、拓宽稳定工作裕度的核心机制。

本文引用格式

朱宇 , 程健慧 , 陈诚 , 黄河峡 , 谭慧俊 . Bump进气道超声速稳定工作机制[J]. 航空学报, 2024 , 45(24) : 130408 -130408 . DOI: 10.7527/S1000-6893.2024.30408

Abstract

To ensure the efficient matching of the supersonic Bump inlet with the engine across the entire flight envelope, this paper explores the dominant mechanism for enhancing its stable operational margin. Taking the four-lip forward-swept cowl Bump inlet as the subject of study, the evolution of the three-dimensional flow structure from supercritical to subcritical conditions at the designed Mach number is analyzed. The research findings indicate that under low mass flow (or high back pressure) conditions, the interaction between the normal shock and the boundary layer on the compression surface of the inlet, which combines a forward-swept cowl and a conical bump, generates a three-dimensional separation vortex that is expelled to the exterior of the inlet entrance. In contrast, an inlet with the same forward-swept cowl combined with a flat wedge experiences a “quasi-two-dimensional” flow separation under low mass flow conditions, with most of the separated flow being ingested into the inlet to result in a narrower stable margin as compared with the Bump inlet. Therefore, the generation of a three-dimensional separation vortex and its expulsion out of the entrance of the duct is the core mechanism for enhancing the aerodynamic performance of the Bump inlet and broadening its stable operational margin.

参考文献

1 HEHS E. JSF diverterless supersonic inlet[J]. Code One Magazine200015(3): 35.
2 MCFARLAN J D. Lockheed Martin’?s joint strike fighter diverterless supersonic inlet[D]. Bethesda: Lockheed Martin Space Systems Company, 2000.
3 杨应凯,李玉璞.JSF X-35的一绝:无附面层隔道超音速进气道[J].国际航空2001(8):13-15.
  YANG Y K, LI Y P. Diverterless supersonic inlet of JSF X-35[J]. International Aviation2001(8):13-15 (in Chinese).
4 陈彦华. 中国FC-1“枭龙”战斗机[J]. 兵器知识2007 (7):9.
  CHEN Y H. FC-1/JF-17 fighter aircraft[J]. Ordnance Knowledge2007 (7): 9 (in Chinese).
5 杨盼.中国空军歼-20战斗机[J]. 兵器知识2020(1):3-4.
  YANG P. The Chinese air force chengdu J-20 [J]. Ordnance Knowledge2020 (1): 3-4 (in Chinese).
6 立文. 揭开面纱的中国最牛战机[J]. 新民周刊2014(45): 48-51.
  LI W. Unveiled China’s greatest fighter[J]. Xinmin Weekly2014(45): 48-51 (in Chinese).
7 朱宇, 李天. Bump进气道设计研究[C]∥?首届全国航空航天领域中的力学问题学术研讨会论文集(上册), 2004.
  ZHU Y, LI T. Bump inlet design study[C]?∥ Proceedings of the First National Symposium on Mechanics in the Field of Aeronautics and Astronautics (Volume I), 2004 (in Chinese).
8 谭慧俊, 郭荣伟. 一种背负式无附面层隔道进气道的数值模拟研究与实验验证[J]. 航空学报200425(6): 540-545.
  TAN H J, GUO R W. Numerical simulation investigation and experimental validation of a top-mounted diverterless inlet and its validation[J]. Acta Aeronautica et Astronautica Sinica200425(6): 540-545 (in Chinese).
9 梁德旺, 李博. 无隔道进气道反设计及附面层排除机理分析[J]. 航空学报200526(3): 286-289.
  LIANG D W, LI B. Reverse design of diverterless inlet and mechanism of diversion of boundary layer[J]. Acta Aeronautica et Astronautica Sinica200526(3): 286-289 (in Chinese).
10 钟易成, 余少志, 吴晴. 凸包(Bump)进气道/DSI模型设计及气动特性研究[J]. 航空动力学报200520(5): 740-745.
  ZHONG Y C, YU S Z, WU Q. Research of Bump inlet (DSI) model design and its aerodynamic properties[J]. Journal of Aerospace Power200520(5): 740-745 (in Chinese).
11 杨应凯. 枭龙飞机Bump进气道设计[J]. 南京航空航天大学学报200739(4): 449-452.
  YANG Y K. Design of bump inlet of thunder/JF-17 aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics200739(4): 449-452 (in Chinese).
12 杨应凯. Bump进气道设计与试验研究[J]. 空气动力学学报200725(3): 336-338, 350.
  YANG Y K. The research of bump inlet design and test[J]. Acta Aerodynamica Sinica200725(3): 336-338, 350 (in Chinese).
13 谢文忠, 郭荣伟. 腹下无隔道大偏距S弯进气道流场特性[J]. 航空学报200829(6): 1453-1459.
  XIE W Z, GUO R W. Flow field of ventral diverterless high offset S-shaped inlet at transonic speeds[J]. Acta Aeronautica et Astronautica Sinica200829(6): 1453-1459 (in Chinese).
14 李博, 梁德旺. 无隔道超声速进气道/前机身一体化计算与试验[J]. 航空学报200930(9): 1597-1604.
  LI B, LIANG D W. Numerical simulation and experiment of integral flow field of diverterless supersonic inlet/forebody[J]. Acta Aeronautica et Astronautica Sinica200930(9): 1597-1604 (in Chinese).
15 王龙, 钟易成, 吴晴, 等. 双锥Bump压缩面设计及气动特性[J]. 航空动力学报201328(1): 82-89.
  WANG L, ZHONG Y C, WU Q, et al. Bipyramid Bump compression surface design and aerodynamic characteristics[J]. Journal of Aerospace Power201328(1): 82-89 (in Chinese).
16 乔文友, 黄国平, 夏晨, 等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J]. 航空动力学报201429(6): 1444-1452.
  QIAO W Y, HUANG G P, XIA C, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet[J]. Journal of Aerospace Power201429(6): 1444-1452 (in Chinese).
17 郑晓刚, 李怡庆, 欧阳智贤, 等. 基于密切原理的Bump进气道外压缩鼓包逆向设计[J]. 航空动力学报201833(9): 2257-2267.
  ZHENG X G, LI Y Q, OUYANG Z X, et al. Reversal design of external compression bump of Bump inlet based on osculating cones principle[J]. Journal of Aerospace Power201833(9): 2257-2267 (in Chinese).
18 王娇. Bump进气道内激波/边界层干扰特性研究[D]. 南京: 南京航空航天大学, 2017: 33-37.
  WANG J. Study on shock wave/boundary layer interaction characteristics in bump inlet[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 33-37 (in Chinese).
19 王娇, 谭慧俊, 黄河峡. Bump进气道中鼓包诱导的激波/边界层干扰特性[J]. 航空动力学报201833(1): 97-107.
  WANG J, TAN H J, HUANG H X. Shock wave/boundary layer interactions induced by bump in the Bump inlet[J]. Journal of Aerospace Power201833(1): 97-107 (in Chinese).
20 王娇, 谭慧俊, 黄河峡. 不同波系配置的鼓包压缩面引起的激波/边界层干扰特性[J]. 航空动力学报201833(2): 372-382.
  WANG J, TAN H J, HUANG H X. Characteristic of shock wave/boundary layer interactions induced by bumps with different shock wave system arrangements[J]. Journal of Aerospace Power201833(2): 372-382 (in Chinese).
21 刘亚洲. 超声速Bump进气道结尾激波/边界层干扰特性研究[D]. 南京: 南京航空航天大学, 2019: 44-50.
  LIU Y Z. Study on the characteristics of shock wave/boundary layer interaction at the end of supersonic Bump inlet[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 44-50 (in Chinese).
22 刘亚洲, 谭慧俊, 黄河峡, 等. 不同波系配置的鼓包压缩面流动特性实验研究[J]. 推进技术201940(8): 1752-1758.
  LIU Y Z, TAN H J, HUANG H X, et al. Experimental research on flow characteristics of bumps with different compression configurations[J]. Journal of Propulsion Technology201940(8): 1752-1758 (in Chinese).
23 田珊珊, 金亮, 杜兆波, 等. 基于鼓包的激波/边界层干扰控制研究进展[J]. 航空学报202344(18): 32-55.
  TIAN S S, JIN L, DU Z B, et al. Research progress of shock wave/boundary layer interaction controls induced by bump[J]. Acta Aeronautica et Astronautica Sinica202344(18): 32-55 (in Chinese).
24 符小刚, 李俊浩, 杨柳. 两型超声速进气道平飞减速时的稳定性[J]. 航空动力学报202439(1): 200-206.
  FU X G, LI J H, YANG L. Stability of two types of supersonic inlets during a level deceleration flight[J]. Journal of Aerospace Power202439(1): 200-206 (in Chinese).
25 周鑫. 含预压缩式凸包的倒置内转高超声速进气道设计与分析[D]. 长沙: 国防科技大学, 2017: 50-62.
  ZHOU X. Design and analysis of inverted inward turning hypersonic inlet with precompression bump [D].Changsha: National University of Defense Technology, 2017: 50-62 (in Chinese).
26 徐尚成. 高超声速进气道Bump/前体一体化设计与研究[D]. 长沙: 国防科技大学, 2018: 38-57.
  XU S C. Design and analysis of hypersonic inlet with integrated Bump/forebody [D]. Changsha: National University of Defense Technology, 2018: 38-57 (in Chinese).
27 汤宏宇. 肋下布局无隔道超声速进气道设计方法与流动特性研究[D]. 南京: 南京航空航天大学, 2021: 63-70.
  TANG H Y. Research on design method and flow characteristics of diverterless supersonic inlet with a corner bump in a wing-fuselage installation[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 63-70 (in Chinese).
28 乔文友, 靳雨南, 任喆, 等. 双旁侧无隔道超声速进气道参数化设计及流动分析[J]. 推进技术202344(3): 45-59.
  QIAO W Y, JIN Y N, REN Z, et al. Parametric design and flow analysis of dual-lateral diverterless supersonic inlet[J]. Journal of Propulsion Technology202344(3): 45-59 (in Chinese).
29 SIMON P C, BROWN D W, HUFF R G. Performance of external-compression bump inlet at Mach numbers of 1.5 to 2.0: NACA, RM E56L19 [R]. Washington, D.C.:NACA, 1957.
30 SEDDON J, GOLDSMITH E. Intake aerodynamics, second edition[M]. Reston: AIAA, 1999.
31 HAMSTRA J W, MCCALLUM B N, SYLVESTER T G, et al. Transition shoulder system and method for diverting boundary layer air: US5749542[P]. 1998-05-12.
32 HAMSTRA J W, SYLVESTER T G. System and method for diverting boundary layer air: US5779189[P]. 1998-07-14.
33 HAMSTRA J W, MCCALLUM B N, MCFARLAND J D. Development, verification and transition of an advanced engine inlet concept for combat aircraft application: MP-121-P-43[R]. Bethesda: Lockheed Martin Space Systems Company, 2003.
34 HAMSTRA J W, MCCALLUM B N. Tactical aircraft aerodynamic integration[M]∥ Encyclopedia of Aerospace Engineering. Hoboken: John Wiley & Sons, Ltd., 2010.
35 HAMSTRA J W. The F-35 Lightning II: From concept to cockpit[M]. Reston: AIAA, 2019.
36 GRIDLEY M, CAHILL M. ACIS air induction system trade study[C]∥ 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996.
37 GRIDLEY M C, WALKER S H. Inlet and nozzle technology for 21st century fighter aircraft[C]∥ Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. New York: ASME, 2015.
38 KAMMAN J H, HALL C L. Effects of selected design variables on three ramp external compression inlet performance: NASA CR-2485[R]. Washington, D.C.: NASA, 1975.
39 HALL G, HURWITZ W, TIEBENS G, et al. Development of the F/A-18 E/F air induction system[C]∥ 29th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1993.
40 约翰·霍普金斯大学应用物理实验所. 冲压发动机技术(上册) [M]. 李存杰, 付巽权, 司徒明, 等, 译. 北京:国防工业出版社, 1987: 70-74.
  Applied Physics Laboratory of Johns Hopkins University. Ramjet engine technology (Volume I) [M]. LI C J, FU X Q, SI T M, et al., translated. Beijing:National Defense Industry Press, 1987: 70-74 (in Chinese).
41 夏雪湔, 邓学蓥. 工程分离流动力学[M]. 北京: 北京航空航天大学出版社, 1991: 37-41.
  XIA X J, DENG X Y. Engineering separation flow mechanics[M]. Beijing: Beihang University Press, 1991:37-41 (in Chinese).
42 张悦, 谭慧俊, 王子运, 等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术202041(2): 241-259.
  ZHANG Y, TAN H J, WANG Z Y, et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology202041(2): 241-259 (in Chinese).
文章导航

/