基于脉压波数-频率谱的水、空气通用翼型尾缘散射噪声快速预测方法
收稿日期: 2024-02-18
修回日期: 2024-04-01
录用日期: 2024-05-29
网络出版日期: 2024-06-17
基金资助
基础加强项目;国家自然科学基金(52375090);国家自然科学基金国际交流与合作项目(12261131502);湖南省自然科学基金(2022JJ30249)
Rapid prediction method for airfoil trailing edge scattering noise in both water and air based on pulse pressure wavenumber-frequency spectrum
Received date: 2024-02-18
Revised date: 2024-04-01
Accepted date: 2024-05-29
Online published: 2024-06-17
翼型尾缘散射噪声是翼型自噪声的重要组成部分,普遍存在于水、空气2种介质中快速航行体及旋转机械的噪声中。基于湍流边界层(TBL)脉动压力(TBL脉压)波数-频率谱的翼型尾缘散射噪声快速预测方法可实现对相关噪声的快速预测,但现有方法在TBL脉压波数-频率谱建模时对压缩性的考虑不足,在压缩性差异明显的水、空气介质中通用性不强。基于可压缩理论基的TBL脉压波数-频率谱模型,结合Amiet翼型远场噪声传播积分模型建立了新的翼型尾缘散射噪声预测方法。通过声学风洞、水洞试验获得了空气、水2种介质中翼型表面的TBL脉压及远场噪声试验数据,对模型进行验证,并与考虑了压缩性的经典Chase Ⅱ模型进行对比。结果表明,新方法在空气、水中具有通用性和较高准确性,且在空气、水中的TBL脉压及噪声预测效果都优于Chase Ⅱ模型。
余荣科 , 赵鲲 , 冯和英 , 章荣平 , 李屹萌 . 基于脉压波数-频率谱的水、空气通用翼型尾缘散射噪声快速预测方法[J]. 航空学报, 2024 , 45(23) : 630295 -630295 . DOI: 10.7527/S1000-6893.2024.30295
Airfoil trailing edge scattering noise is a significant component of airfoil self-noise, commonly found in the noise of fast-moving bodies rotating machinery. A rapid prediction method for airfoil trailing edge scattering noise based on the wavenumber-frequency spectrum of turbulent boundary layer pulsating pressure (referred to as “TBL(Turbulent boundary layer) pulsating pressure”) can achieve fast noise prediction. However, existing methods lack sufficient consideration of compressibility when modeling the TBL pulsating pressure wavenumber-frequency spectrum, leading to weak universality in media with significant differences in compressibility, such as water and air. This paper establishes a new prediction method for airfoil trailing edge scattering noise based on a compressible theorybased TBL pulsating pressure wavenumber-frequency spectrum model, combined with Amiet’s airfoil far-field noise propagation integral model. Acoustic wind tunnel and water tunnel experiments were conducted to obtain experimental data on TBL pulsating pressure and far-field noise on airfoil surfaces in both air and water media, to verify the model, and to compare it with the classic Chase Ⅱ model, which also considers compressibility. The results indicate that the new method demonstrates general applicability and high accuracy in both air and water, and its prediction performance for TBL pressure fluctuations and noise in air and water surpasses that of the Chase Ⅱ model.
1 | LEE S, AYTON L, BERTAGNOLIO F, et al. Turbulent boundary layer trailing-edge noise: Theory, computation, experiment, and application[J]. Progress in Aerospace Sciences, 2021, 126: 100737. |
2 | LIU W Y. A review on wind turbine noise mechanism and de-noising techniques[J]. Renewable Energy, 2017, 108: 311-320. |
3 | 朱卫军, 刘宇新, 孙振业, 等. 基于壁面压力谱方法的风力机气动噪声模型[J]. 空气动力学学报, 2022, 40(4): 81-89. |
ZHU W J, LIU Y X, SUN Z Y, et al. Wind turbine noise prediction model based on airfoil wall-pressure spectra[J]. Acta Aerodynamica Sinica, 2022, 40(4): 81-89 (in Chinese). | |
4 | PAN Y C, ZHANG H X, ZHOU Q D. Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 899-913. |
5 | LYU B S, AYTON L J. Rapid noise prediction models for serrated leading and trailing edges[J]. Journal of Sound and Vibration, 2020, 469: 115136. |
6 | CHEN B N, YANG X Q, CHEN G Y, et al. Numerical study on the flow and noise control mechanism of wavy cylinder[J]. Physics of Fluids, 2022, 34(3): 036108. |
7 | 仝帆, 乔渭阳, 王良锋, 等. 仿生学翼型尾缘锯齿降噪机理[J]. 航空学报, 2015, 36(9): 2911-2922. |
TONG F, QIAO W Y, WANG L F, et al. Noise reduction mechanism of bionic airfoil trailing edge serrations[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2911-2922 (in Chinese). | |
8 | WANG X H, HUANG Q G, PAN G. Numerical research on the influence of sail leading edge shapes on the hydrodynamic noise of a submarine[J]. Applied Ocean Research, 2021, 117: 102935. |
9 | MORIARTY P, GUIDATI G, MIGLIORE P, et al. Prediction of turbulent inflow and trailing-edge noise for wind turbines: AIAA-2005-2881?[R]. Reston: AIAA, 2005. |
10 | HOWE M S. A review of the theory of trailing edge noise[J]. Journal of Sound and Vibration, 1978, 61(3): 437-465. |
11 | BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction: NASA-RP-1218[R].Washington, D.C.: NASA,1989. |
12 | KAMRUZZAMAN M, LUTZ T, WüRZ W, et al. Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data[J]. Wind Energy, 2012, 15(1): 45-61. |
13 | BERTAGNOLIO F, FISCHER A, ZHU W J. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling[J]. Journal of Sound and Vibration, 2014, 333(3): 991-1010. |
14 | KAMRUZZAMAN M, BEKIROPOULOS D, LUTZ T, et al. A semi-empirical surface pressure spectrum model for airfoil trailing-edge noise prediction[J]. International Journal of Aeroacoustics, 2015, 14(5-6): 833-882. |
15 | 赵鲲, 章荣平, 杨玫, 等. 基于线阵列的湍流边界层壁面脉动压力波数-频率谱模型实验研究[J].空气动力学学报, 2024, 42(06): 15-34. |
ZHAO K, ZHANG R P, YANG M, et al. Study of the turbulent boundary layer wall pressure fluctuation wavenumber-frequency spectrum models with the experiment using linear array[J]. Acta Aerodynamica Sinica, 2024, 42(06) : 15-34. (in Chinese). | |
16 | WILLIAMS J E F. Surface-pressure fluctuations induced by boundary-layer flow at finite Mach number[J]. Journal of Fluid Mechanics, 1965, 22(3): 507-519. |
17 | DOISY Y. Modelling wall pressure fluctuations under a turbulent boundary layer[J]. Journal of Sound and Vibration, 2017, 400: 178-200. |
18 | BERGERON R F Jr. Aerodynamic sound and the low-wavenumber wall-pressure spectrum of nearly incompressible boundary-layer turbulence[J]. The Journal of the Acoustical Society of America, 1973, 54(1): 123-133. |
19 | CHASE D M. Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure[J]. Journal of Sound Vibration, 1980, 70(1): 29-67. |
20 | CHASE D M. The estimated level of low-wavenumber pressure generated by non-linear interaction of a compliant wall with a turbulent boundary layer[J]. Journal of Sound and Vibration, 1987, 116(1): 25-32. |
21 | AMIET R K. Noise due to turbulent flow past a trailing edge[J]. Journal of Sound Vibration, 1976, 47(3): 387-393. |
22 | LIGHTHILL MJ. On sound generated aerodynamically I. General theory[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1952, 211(1107): 564-587. |
23 | FFOWCS WILLIAMS J E. Boundary-layer pressures and the Corcos model: Adevelopment to incorporate low-wavenumber constraints[J]. Journal of Fluid Mechanics, 1982, 125: 9. |
24 | 赵鲲, 余荣科, 李屹萌, 等. 水、空气通用的湍流边界层壁面脉动压力波数-频率谱预测模型[J/OL]. 声学学报, (2024-05-31) [2024-10-08]. . |
ZHAO K, Yu R K, LI Y M. Modelling of the turbulent boundary layer wall pressure fluctuation in common use between air and water. Acta Acustica, (2024-05-31)[2024-09-22]. (in Chinese). . | |
25 | STALNOV O, PARUCHURI C, JOSEPH P, et al. Prediction of broadband trailing-edge noise based on Blake model and amiet theory: AIAA-2015-2526?[R]. Reston: AIAA, 2015. |
26 | CORCOS G M. The structure of the turbulent pressure field in boundary-layer flows[J]. Journal of Fluid Mechanics, 1964, 18: 353-378. |
27 | ROGOWSKI K, KRóLAK G, BANGGA G. Numerical study on the aerodynamic characteristics of the NACA 0018 airfoil at low Reynolds number for darrieus wind turbines using the transition SST model[J]. Processes, 2021, 9(3): 477. |
28 | NAKANO T, FUJISAWA N, OGUMA Y, et al. Experimental study on flow and noise characteristics of NACA0018 airfoil[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(7): 511-531. |
29 | GERAKOPULOS R, BOUTILIER M, YARUSEVYCH S. Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers: AIAA-2010-4629[R]. Reston: AIAA, 2010. |
30 | FOLEY A W, KEITH W L, CIPOLLA K M. Comparison of theoretical and experimental wall pressure wavenumber-frequency spectra for axisymmetric and flat-plate turbulent boundary layers[J]. Ocean Engineering, 2011, 38(10): 1123-1129. |
31 | CIPOLLA K M, KEITH W L. Measurements of the wall pressure spectra on a full-scale experimental towed array[J]. Ocean Engineering, 2008, 35(10): 1052-1059. |
32 | KOLMOGOROV A N. Dissipation of energy in the locally isotropic turbulence[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 434(1890): 15-17. |
33 | POPE S B. Turblueny flow[M]. Cambridge: Cambridge University Press, 2013. |
/
〈 |
|
〉 |