流体力学与飞行力学

旋转爆轰燃烧室与涡轮导向器集成特性数值研究

  • 孟博威 ,
  • 马虎 ,
  • 夏镇娟 ,
  • 周长省
展开
  • 南京理工大学 机械工程学院 特种动力技术教育部重点实验室,南京 210094
.E-mail: mahuokok@163.com

收稿日期: 2023-06-27

  修回日期: 2023-07-14

  录用日期: 2023-08-15

  网络出版日期: 2023-08-25

基金资助

国家自然科学基金(12072163);先进航空动力创新工作站项目(HKCX2020-02-007-002);国防科技重点实验室基金(2023LB013003)

Numerical study on characterization of integrated rotating detonation combustor and turbine guide vane

  • Bowei MENG ,
  • Hu MA ,
  • Zhenjuan XIA ,
  • Changsheng ZHOU
Expand
  • Key Laboratory of Special Engine Technology,Ministry of Education,School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
E-mail: mahuokok@163.com

Received date: 2023-06-27

  Revised date: 2023-07-14

  Accepted date: 2023-08-15

  Online published: 2023-08-25

Supported by

National Natural Science Foundation of China(12072163);Advanced Aero Power Innovation Workstation Project(HKCX2020-02-007-002);National Defense Science and Technology Key Laboratory Foundation(2023LB013003)

摘要

为了研究叶栅稠度对旋转爆轰燃烧室-涡轮导向器流场分布和工作特性的影响,以便进一步优化旋转爆轰燃烧室与涡轮导向器的相关设计,基于SST k-ω黏性湍流模型求解二维非定常雷诺平均Navier-Stokes控制方程,并结合间歇因子转捩模型,爆轰燃烧机理采用正癸烷-空气单步反应,通过在初始流场施加高温高压区诱发爆轰波,分别对具有6种不同叶栅稠度导向器和不具备导向器的旋转爆轰燃烧室开展数值计算,对瞬态流场演变和波系结构进行了讨论分析,评估了不同叶栅稠度下导向器的工作特性。研究结果表明:导向器上下游均形成了动态的耙式激波包络面,其结构和强度受叶栅稠度影响,爆轰流场特性保证了叶栅通道自起动能力。导向器抑制了上游压力峰值,峰值衰减率最高可达60.87%。爆轰燃烧的总压增益得到提高,导向器出口增压比最高为1.24,出口增压比频率与叶栅稠度大小呈正相关,最高可达143.33 kHz。叶栅通道对爆轰产物具有一定流动调节能力,时均落后角最小为1.84°,出口时均马赫数最高为1.38,此外出口气流角均匀性显著提高。研究结果揭示了导向器对提高连续旋转爆轰涡轮发动机性能的潜在价值,对该种发动机的设计优化以及工程化应用提供了一定指导。

本文引用格式

孟博威 , 马虎 , 夏镇娟 , 周长省 . 旋转爆轰燃烧室与涡轮导向器集成特性数值研究[J]. 航空学报, 2024 , 45(10) : 129223 -129223 . DOI: 10.7527/S1000-6893.2023.29223

Abstract

This study investigates the influence of cascade solidity on the flow field distribution and working characteristics of the rotating detonation combustor- turbine guide vane to further optimize the design of the rotating detonation combustor and turbine guide vane. Based on the SST k-ω viscous turbulence model, the two-dimensional unsteady Reynolds-averaged Navier-Stokes control equation is solved. Combined with the intermittent factor transition model, the detonation combustion mechanism adopts the n-decane-air single-step reaction. By applying the high temperature and high pressure zone to the initial flow field to induce the detonation wave, we conduct numerical calculation for the rotating detonation combustor with six different cascade solidity turbine guide vanes and without the turbine guide vane, respectively. The instantaneous flow field evolution and wave structure are discussed and analyzed, and the working characteristics of the turbine guide vane under different cascade solidity are evaluated. The results show that the dynamic rake-type shock envelope is formed in both upstream and downstream of the turbine guide vane, with its structure and strength affected by the cascade solidity. The detonation flow field characteristics ensure the self start ability of the cascade channel. The turbine guide vane suppresses the upstream pressure peak, and the peak attenuation rate is up to 60.87%. The total pressure gain of detonation combustion is improved; the maximum total pressure ratio at the outlet of the guide vane is 1.24, and the frequency of the outlet total pressure ratio is positively correlated with the cascade solidity, up to 143.33 kHz. The cascade passage has a certain ability to adjust the flow of detonation products. The minimum time-average deviation angle is 1.84°, the maximum time-average Mach number at the outlet is 1.38, and the uniformity of the outlet flow angle is significantly improved. The research results reveal the potential value of the turbine guide vane to the performance improvement of the continuous rotating detonation turbine engine, providing guidance for the design optimization and engineering application of the engine.

参考文献

1 严传俊, 范玮. 燃烧学[M]. 3版. 西安: 西北工业大学出版社, 2016: 74.
  YAN C J, FAN W. Combustion[M]. 3rd ed. Xi’an: Northwestern Polytechnical University Press, 2016: 74 (in Chinese).
2 李连波, 陈雄, 周长省, 等. 旋转爆震发动机与涡轮机的集成[J]. 科学技术与工程202020(26): 10551-10556.
  LI L B, CHEN X, ZHOU C S, et al. Integration of rotating detonation engine with turbine[J]. Science Technology and Engineering202020(26): 10551-10556 (in Chinese).
3 FROLOV S M, AKSENOV V S, DUBROVSKII A V, et al. Energy efficiency of a continuous-detonation combustion chamber[J]. Combustion, Explosion, and Shock Waves201551(2): 232-245.
4 计自飞, 张会强, 谢峤峰, 等. 连续旋转爆震涡轮发动机热力过程与性能分析[J]. 清华大学学报(自然科学版)201858(10): 899-905.
  JI Z F, ZHANG H Q, XIE Q F, et al. Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine[J]. Journal of Tsinghua University (Science and Technology)201858(10): 899-905 (in Chinese).
5 TOBITA A, FUJIWARA T, WOLANSKI P. Detonation engine and flying object provided therewith: US20050284127[P]. 2005-12-29.
6 ZHOU S B, MA Y, LIU F, et al. Effects of a straight guide vane on the operating characteristics of rotating detonation combustor[J]. Acta Astronautica2023203: 135-145.
7 ZHOU S B, MA H, LI S, et al. Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics[J]. International Journal of Hydrogen Energy201742(31): 20297-20305.
8 WU Y W, WENG C S, ZHENG Q, et al. Experimental research on the performance of a rotating detonation combustor with a turbine guide vane[J]. Energy2021218: 119580.
9 WEI W L, WU Y W, WENG C S, et al. Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane[J]. Defence Technology202117(5): 1617-1624.
10 BACH E, BOHON M, PASCHEREIT C O, et al. Influence of nozzle guide vane orientation relative to RDC wave direction[C]∥Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
11 BACH E, STATHOPOULOS P, PASCHEREIT C O, et al. Performance analysis of a rotating detonation combustor based on stagnation pressure measurements[J]. Combustion and Flame2020217: 21-36.
12 SHEN D W, CHENG M, WU K, et al. Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor[J]. Acta Astronautica2022193: 90-99.
13 张成名, 林志勇, 吴倩敏. 连续旋转爆震波与涡轮导向器叶栅相互作用数值研究[J]. 推进技术202243(6): 199-207.
  ZHANG C M, LIN Z Y, WU Q M. Numerical study on interaction between continuous rotating detonation wave and turbine stator blades[J]. Journal of Propulsion Technology202243(6): 199-207 (in Chinese).
14 ASLI M, STATHOPOULOS P, PASCHEREIT C O. Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor[J]. Journal of Engineering for Gas Turbines and Power2021143(6): 061011.
15 BRAUN J, CUADRADO D G, ANDREOLI V, et al. Characterization of an integrated nozzle and supersonic axial turbine with a rotating detonation combustor[C]∥Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
16 LIU Z, BRAUN J, PANIAGUA G. Performance of axial turbines exposed to large fluctuations[C]∥Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017.
17 LIU Z, BRAUN J, PANIAGUA G. Characterization of a supersonic turbine downstream of a rotating detonation combustor[J]. Journal of Engineering for Gas Turbines and Power2019141(3): 031501.
18 SOUSA J, PANIAGUA G, COLLADO-MORATA E. Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor[J]. Applied Energy2017195: 247-256.
19 SOUSA J, COLLADO-MORATA E, PANIAGUA G. Design and optimization of supersonic turbines for detonation combustors[J]. Chinese Journal of Aeronautics202235(11): 33-44.
20 SOUSA J, PANIAGUA G. Entropy minimization design approach of supersonic internal passages[J]. Entropy201517(8): 5593-5610.
21 AUNGIER R H. Turbine aerodynamics: Axial-flow and radial-flow turbine design and analysis[M]. New York: ASME, 2006: 143-144.
22 ZWEIFEL O. The spacing of turbo-machine blading, especially with large angular deflection[J]. Brown Boveri Review194532(12): 436-444.
23 SUN J, ZHOU J, LIU S J, et al. Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions[J]. Acta Astronautica2018152: 630-638.
24 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
25 阎超. 航空CFD四十年的成就与困境[J]. 航空学报202243(10): 526490.
  YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica202243(10): 526490 (in Chinese).
26 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报202038(5): 829-857.
  YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica202038(5): 829-857 (in Chinese).
27 LIBBY P A. On the prediction of intermittent turbulent flows[J]. Journal of Fluid Mechanics197568(2): 273-295.
28 JIN S, QI L, ZHAO N B, et al. Experimental and numerical research on rotating detonation combustor under non-premixed conditions[J]. International Journal of Hydrogen Energy202045(16): 10176-10188.
29 于维铭. 航空煤油替代燃料火焰传播速度与反应动力学机理研究[D]. 北京: 清华大学, 2014: 53-56.
  YU W M. Study on flame speed and chemical reaction mechanism for alternative fuels of aviation kerosene[D].Beijing: Tsinghua University, 2014: 53-56 (in Chinese).
30 肖保国, 杨顺华, 赵慧勇, 等. RP-3航空煤油燃烧的详细和简化化学动力学模型[J]. 航空动力学报201025(9): 1948-1955.
  XIAO B G, YANG S H, ZHAO H Y, et al. Detailed and reduced chemical kinetic mechanisms for RP-3 aviation kerosene combustion[J]. Journal of Aerospace Power201025(9): 1948-1955 (in Chinese).
31 冯文康, 郑权, 汪小卫, 等. 当量比对煤油-空气两相旋转爆轰波的影响[J]. 兵工学报202243(6): 1304-1315.
  FENG W K, ZHENG Q, WANG X W, et al. Effect of equivalent ratio on two-phase rotating detonation wave of kerosene-air[J]. Acta Armamentarii202243(6): 1304-1315 (in Chinese).
32 夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报201839(2): 121438.
  XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica201839(2): 121438 (in Chinese).
33 CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, Transactions of the ASME, 2008130(7): 078001.
34 DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal198321(12): 1628-1634.
35 TANG X M, WANG J P, SHAO Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame2015162(4): 997-1008.
36 LIU X Y, LUAN M Y, CHEN Y L, et al. Propagation behavior of rotating detonation waves with premixed kerosene/air mixtures[J]. Fuel2021294: 120253.
37 李冬, 凌文辉, 张义宁, 等. 吸气式旋转爆震发动机热力循环过程分析与性能计算[J]. 推进技术202344(4): 2202014.
  LI D, LING W H, ZHANG Y N, et al. Thermodynamic cycle analysis and performance calculation of air-breathing rotating detonation engine[J]. Journal of Propulsion Technology202344(4): 2202014 (in Chinese).
38 ZHANG S J, MA J Z, WANG J P. Theoretical and numerical investigation on total pressure gain in rotating detonation engine[J]. AIAA Journal202058(11): 4866-4877.
39 FERNELIUS M H, GORRELL S E. Predicting efficiency of a turbine driven by pulsing flow[C]∥Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017.
40 PANIAGUA G, IORIO M C, VINHA N, et al. Design and analysis of pioneering high supersonic axial turbines[J]. International Journal of Mechanical Sciences201489: 65-77.
41 KANTROWITZ A, DONALDSON CD. Preliminary investigation of supersonic diffusers: NACA ACR No. L5D20[R]. Washington, D.C.: NACA, 1945.
文章导航

/