弯曲/倾斜静叶对涡轮单音噪声影响的数值分析
收稿日期: 2023-07-26
修回日期: 2023-09-05
录用日期: 2023-09-28
网络出版日期: 2023-10-11
基金资助
国家科技重大专项(2017-II-0008-0022);国家自然科学基金(52276038);航空发动机及燃气轮机基础科学中心项目(P2022-A-II-003-001)
Numerical analysis of effect of bend/lean stator on turbine tonal noise
Received date: 2023-07-26
Revised date: 2023-09-05
Accepted date: 2023-09-28
Online published: 2023-10-11
Supported by
National Science and Technology Major Project of China(2017-II-0008-0022);National Natural Science Foundation of China(52276038);Aero Engine and Gas Turbine Basic Science Center(P2022-A-II-003-001)
以GE E3低压涡轮末级为研究对象,采用经过实验验证的流场/声场混合模型对弯曲静叶(-30°~30°)、倾斜静叶(-15°~15°)和部分角度下弯曲/倾斜组合静叶对涡轮气动性能和尾迹干涉单音噪声及位势干涉单音噪声的影响规律进行了研究。同时,从流场和声场角度初步分析了弯曲/倾斜静叶的降噪机制。结果表明:孤立的大弯曲和大倾斜静叶有利于提高涡轮级效率,两者组合静叶甚至可能出现“1+1>2”的效率收益,而相对于尾迹干涉单音噪声,位势干涉单音噪声受静叶弯曲或倾斜的影响更大,取得的降噪收益也更明显;相对于孤立的弯曲或倾斜静叶,弯曲/倾斜组合静叶可以同时实现效率和噪声的双收益,最佳方案为弯曲20°/倾斜10°组合静叶,气动效率提升0.16%,同时获得1.84 dB的降噪收益;弯曲/倾斜静叶对效率的影响主要与二次流损失和叶型损失相关,而对噪声的影响主要与干涉强度和相位变化有关。总的来说,尽管弯曲/倾斜静叶不是新型设计方案,但是弯曲或倾斜静叶具备实现涡轮高效率和低噪声设计的潜力,其物理机制和降噪规律仍然值得开展大量研究,可为未来工程应用提供理论支撑。
向康深 , 陈伟杰 , 连健欣 , 乔渭阳 . 弯曲/倾斜静叶对涡轮单音噪声影响的数值分析[J]. 航空学报, 2024 , 45(10) : 129366 -129366 . DOI: 10.7527/S1000-6893.2023.29366
The last stage of GE E3 low-pressure turbine is taken as the object of study, and the experimentally validated flow/acoustic field hybrid model is used to investigate the effect of the bend stator (-30°–30°), the lean stator (-15°–15°), and the partial combination of the bend/lean stator with serval angles on the aerodynamic performance of the turbine and the influence law of wake interaction tonal noise and potential interaction tonal noise. The physical mechanisms are analyzed in terms of the flow field and the acoustic field. The results are obtained as follows. Isolated large-bending and large-leaning stators are favorable to improving the efficiency of the turbine stage, and the combination may even result in the efficiency gain of “1+1>2”; the potential interaction tonal noise is more affected by the bend or lean of the stator than the wake interaction tonal noise, and the gain of noise reduction is more obvious. Compared to the isolated bend or lean stator, the bend/lean stator can achieve both efficiency and noise gains, and the optimal scheme is the bend 20°/lean 10° stator, which improves the aerodynamic efficiency by 0.16% and obtains a noise reduction gain of 1.84 dB at the same time. The effect of the bend/lean stator on the efficiency is mainly related to the secondary flow and the blade loss, whereas its effect on the noise is mainly related to interaction intensity and phase changes. In conclusion, although the bend/lean stator is not a novel design option, it has the potential to realize a high-efficiency and low-noise design of the turbine; thus, its physical mechanisms and noise reduction laws are still worthy of extensive research, so as to provide theoretical support for future engineering applications.
1 | BJORN V S, ALBERY C B, MCKINLEY R L. US Navy flight deck hearing protection use trends: Survey results[C]∥ New Directions for Improving Audio Effectiveness. Neuilly-sur-Seine: Research Technology Organization, 2005. |
2 | MCKINLEY R L, BJORN V S, HALL J A. Improved hearing protection for aviation personnel[C]∥ Proceedings of NATO RTO HFM-123 Symposium?Direction for Improving Audio Effectiveness. Neuilly-sur-Seine: Research Technology Organization, 2005. |
3 | JOSEPH D. Jet engine noise reduction[R]. Fort Belvoir : Defense Technical Information Center,2009. |
4 | HUFF D L. NASA Glenn’s contributions to aircraft engine noise research[J]. Journal of Aerospace Engineering, 2013, 26(2): 218-250. |
5 | SPAKOVSZKY Z S. Advanced low-noise aircraft configurations and their assessment: Past,present, and future[J]. CEAS Aeronautical Journal, 2019, 10: 137-157. |
6 | LEYLEKIAN L, COVRIG A, MAXIMOVA A. Aviation noise impact management[M]. Cham: Springer, 2022. |
7 | HE Q X. Development of an income-based hedonic monetization model for the assessment of aviation-related noise impacts[D]. Cambridge: Massachusetts Institute of Technology, 2010: 104-105. |
8 | LOUISE B. Aviation: Noise pollution[R]. London:House of Common Library, 2014: 9-10. |
9 | FAIYETOLE A A, SIVOWAKU J T. The effects of aircraft noise on psychosocial health[J]. Journal of Transport & Health, 2021, 22: 101230. |
10 | WU C H, REDONNET S. Prediction of aircraft noise impact with application to Hong Kong international airport[J]. Aerospace, 2021, 8(9): 264. |
11 | HAUPTVOGEL D, BARTELS S, SCHRECKENBER G D, et al. Aircraft noise distribution as a fairness dilemma—a review of aircraft noise through the lens of social justice research[J]. International Journal of Environmental Research and Public Health, 2021, 18(14): 7399. |
12 | TYLER J M, SOFRIN F G. Axial flow compressor noise studies: SAE technical paper 620532 [R]. Warrendale: SAE International, 1962. |
13 | SANJOSE M, DAROUKH M, MAGNET W, et al. Tonal fan noise prediction and validation on the ANCF configuration[J]. Noise Control Engineering Journal, 2015, 63(6): 552–561. |
14 | QIU X H, DU L, JING X D, et al. Optimality analysis of bulk-reacting liners based on mode-merging design method[J]. Journal of Sound and Vibration, 2020, 485: 115581. |
15 | CHEN C, LI X D, HU F Q. On spatially varying acoustic impedance due to high sound intensity decay in a lined duct[J]. Journal of Sound and Vibration, 2020, 483: 115430. |
16 | 乔渭阳.航空发动机气动声学设计的理论、模型和方法[J].推进技术, 2021, 42(1): 10-38. |
QIAO W Y. Theory, model and method of aero-engine aeroacoustic design[J]. Journal of Propulsion and Technology, 2021, 42(1): 10-38 (in Chinese). | |
17 | NESBITT E. Towards a quieter low pressure turbine: Design characteristics and prediction needs[J]. International Journal of Aeroacoustics, 2010, 10(1): 1-15. |
18 | MOREAU S. Turbomachinery noise predictions: Present and future[J]. Acoustics, 2019, 1(1): 92-116. |
19 | LUO B, CHU W L, DONG W, et al. Aerodynamic characteristics and noise analysis of a low-speed axial fan[C]∥ Proceedings of ASME Turbo Expo 2018: Power for Land, Sea, and Air. New York:ASME, 2018. |
20 | 张伟光,王晓宇,孙晓峰. 叶片弯扭组合设计对风扇气动噪声的被动控制[J]. 航空学报, 2017, 38(2): 167-175. |
ZHANG W G, WANG X Y, SUN X F. Passive control of fan noise by vane sweep and lean [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 167-175 (in Chinese). | |
21 | ZHANG W G, WANG X Y, DU L, et al. Mutual effect between swept-and-leaned vanes and acoustic liners on fan interaction-noise reduction[J]. AIAA Journal, 2019, 57(6): 2479-2488. |
22 | 蒋永松,郑文涛,赵航,等. 风扇出口导向叶片低噪声设计Ⅰ: 方法与优化[J]. 航空学报, 2019, 40(10): 14-24. |
JIANG Y S, ZHENG W T, ZHAO H, et al. Low noise design of fan outlet guide vane, part Ⅰ: Method and optimization [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 14-24 (in Chinese). | |
23 | 郑文涛,蒋永松,赵航,等. 风扇出口导向叶片低噪声设计Ⅱ: 数值验证[J]. 航空学报, 2019, 40(10): 25-37. |
ZHENG W T, JIANG Y S, ZHAO H, et al. Low noise design of fan outlet guide vane, part Ⅱ:Numerical verifications[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 25-37 (in Chinese). | |
24 | WANG L F, MAO L, XIANG K, et al. Numerical study on duct acoustic modal and source flow structure of fan tones with leaned and swept stator[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021. |
25 | HAN J T, ZHANG Y, LI S Y, et al. Stator modification methods for diagonal flow fans to achieve noise reduction of rotor-stator interaction[J]. Journal of Mechanical Science and Technology, 2022, 36(2): 785-796. |
26 | TRAUB P, GRUNDEL H, GAUTIER S. Numerical investigation for optimizing the aero-acoustical design of modern LP-turbines [C]∥ The thirteenth International Congress on Sound and Vibration. Vienna: TU Wien, 2006. |
27 | BROSZAT D, KENNEPOHL F, TAPKEN U, et al. Validation of an acoustically 3-D-designed turbine exit guide vane[C]∥ Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2010. |
28 | 赵磊, 乔渭阳, 谭洪川. 弯曲/倾斜叶片对大展弦比涡轮气动性能影响[J]. 推进技术, 2011, 32(5): 625-630. |
ZHAO L, QIAO W Y, TAN H C. Effects of bowed/lean vanes on aerodynamic performance of high aspect ratio turbine[J]. Journal of Propulsion Technology, 2011, 32(5): 625-630 (in Chinese). | |
29 | 赵磊, 乔渭阳, 谭洪川. 低压涡轮的气动-声学三维数值优化: 倾斜导叶策略[J]. 航空学报, 2013, 34(2): 246-254. |
ZHAO L, QIAO W Y, TAN H C. Aerodynamic-acoustic three-dimensional numerical optimization of low pressure turbine: lean vane strategy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 246-254 (in Chinese). | |
30 | ZHU Y L, LUO J Q, LIU F. Influence of blade lean together with blade clocking on the overall aerodynamic performance of a multi-stage turbine[J]. Aerospace Science and Technology, 2018, 80: 329-336. |
31 | XIANG K S, CHEN W J, LLIAN J, et al. Numerical analysis on sound characteristics and bionic control of turbine tonal noise[C]∥ Proceedings of the AIAA AVIATION 2022 Forum. Reston: AIAA, 2022. |
32 | GOLDSTEIN M E. Aeroacoustics[M]. New York: McGraw-Hill International Book Co., 1976. |
33 | 乔渭阳, 王良锋. 航空发动机气动声学[M]. 2版. 西安: 西北工业大学出版社, 2016. |
QIAO W Y, WANG L F. Aeroacoustics of aero-engine[M]. 2nd ed. Xi’an: Northwestern Polytechnical University Press, 2016 (in Chinese). |
/
〈 |
|
〉 |