WiseCFD V2023:一种基于开放架构的CFD软件验证与确认应用支持平台
收稿日期: 2024-03-25
修回日期: 2024-05-06
录用日期: 2024-06-11
网络出版日期: 2024-06-14
基金资助
国家数值风洞工程基础研究课题(NNW2019ZT7-A18);陕西省重点研发计划(2022ZDLGY02-07)
WiseCFD V2023: A software framework with open architecture to support verification and validation and credibility assessment of CFD software
Received date: 2024-03-25
Revised date: 2024-05-06
Accepted date: 2024-06-11
Online published: 2024-06-14
Supported by
NNW Fundamental Research Program(NNW2019ZT7-A18);Shaanxi Key Research and Development Program(2022ZDLGY02-07)
验证与确认(V&V)是确保CFD软件及其模拟结果可信度最重要和最基础的活动。通过建立流程化、自动化的软件平台支持CFD软件验证、确认和可信度评价工作开展,有助于减少人为操作错误、大幅提高验证与确认的工作效率。从2004年第1个版本的WiseCFD平台发布以来,针对如何建立开放的CFD软件可信度评估框架,开展过很多尝试。从系统工作流程、软件架构、核心功能模块组成等方面着重介绍一种基于Web和开放架构思路实现的新一代CFD软件验证与确认应用支持平台:WiseCFD V2023,并对平台关键技术及实现进行论述。以CFD软件可信度评价指标体系为理论指导,辅以标准化的验证和确认数据库建设,并采用CFD数据及软件接口标准化技术,打通底层工具链和数据链,平台突破了针对不同类型CFD软件的开放集成、针对不同类型计算作业的开放工作流定义、基于评价指标的不同类型验证、确认和可信度评价任务的开放定义、开放的底层支持验证和确认数据库以及自动化验证和确认等关键技术,构建了一套自动化的、面向专业CFD软件验证、确认和可信度综合评价的基础软件框架。具体实现采用三层B/S软件架构,并基于微服务、容器化以及容器编排等云原生技术进行构建,便于平台的创建和部署。针对典型工程CFD软件开展的验证、确认和可信度评价场景应用示范,证实所构建验证与确认应用支持平台的可行性和有效性。
关键词: 可信度; 验证与确认; 可信度评价指标; 开放架构; 计算流体力学(CFD)
李立 , 梁益华 , 杨永 , 武君胜 . WiseCFD V2023:一种基于开放架构的CFD软件验证与确认应用支持平台[J]. 航空学报, 2024 , 45(20) : 630440 -630440 . DOI: 10.7527/S1000-6893.2024.30440
Verification and Validation (V&V) are the most important and fundamental measures to ensure credibility of CFD software. Since the first version of the so-called WiseCFD platform published on 2004 to support CFD V&V, many efforts have been made to establish an open framework to support credibility assessment of CFD software as well. In this paper, the WiseCFD V2023 platform is presented, which is towards establishing an open framework to support V&V and credibility assessment of CFD software on Web. The new platform is developed based on the theory of credibility evaluation index system, and with technologies for standard V&V database, as well as technologies for standard interface of CFD data and software to breakthrough the key technologies such as open integration for different CFD software, open work flow definitions for different computation jobs, open definitions of V&V and credibility assessment tasks based on different choices of evaluation indexes, open V&V database behind the platform, and automatic verification and validation. The software platform is implemented with 3-level B/S software architecture, and is established through cloud native technologies such as microservices, containerization, and container orchestration for easy creation and deployment. The feasibility and efficiency of the presented platform is demonstrated through V&V and credibility assessment of typical CFD software for engineering applications.
1 | 周铸, 黄江涛, 高正红, 等. 民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报, 2019, 40(1): 522370. |
ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522370 (in Chinese). | |
2 | MAUERY T, ALONSO J, CARY A, et al. A guide for aircraft certification by analysis: NASA/CR-20210015404[R]. Hampton: NASA, 2021. |
3 | ANSYS Inc. Ansys Fluent Tourial Guide[R]. Canonsburg: ANSYS Inc, 2023. |
4 | RIZZI A, VOS J. Toward establishing credibility in computational fluid dynamics simulations[J]. AIAA Journal, 1998, 36(5): 668-675. |
5 | AIAA. Guide for the verification and validation of computational fluid dynamics simulations [M]. Washington (DC): American Institute of Aeronautics and Astronautics, Inc, 1998. |
6 | OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38(3): 209-272. |
7 | HALLISSY B P, HINE D, LAIOSA J P, et al. CREATE-AV quality assurance: best practices for validating and supporting computation-based engineering software[C]∥ Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
8 | MEHTA U B, EKLUND D R, ROMERO V, et al. Simulation credibility: advances in verification, validation, and uncertainty quantification:NASA/TP-2016-219422 [R]. Moffett Field: NASA Ames Research Center, 2016. |
9 | 陈作斌, 白文. 气动计算软件可信度研究专辑[J]. 航空计算技术, 2004: 32(S1): 1-2. |
CHEN Z B, BAI W. Special edition on credibility study for numerical software of aerodynamics[J]. Aeronautical Computing, 2004: 32(S1): 1-2 (in Chinese). | |
10 | BAI W, LI L, and LIANG Y H. Recent efforts for credible CFD Simulations in China[C]∥Proceedings of 25th international congress of aeronautical science, Hamburg, ICAS, 2006. |
11 | 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2): 279-288. |
DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2): 279-288 (in Chinese). | |
12 | LI L, LIANG Y H, MA R. A hierarchical model for cfd validation of transporter aircraft [C]∥Proceedings of Eighth International Conference on Computational Fluid Dynamics (ICCFD8). Chengdu: China Aerodynamics Research and Development Center, 2014: ICCFD-8- 2014-0031. |
13 | BAI W, LI L, LI Z M, et al. CFD V & V and open benchmark database[J]. Chinese Journal of Aeronautics, 2006, 19(2): 160-167. |
14 | LIANG Y, LI L. The WiseCFD platform for CFD credibility analysis[J]. Computational Fuild Dynamics Journal, 2007, 15(4): 450-456. |
15 | 孙久振. 基于OSGi的CFD可信度分析平台的设计与实现[D]. 西安: 西安电子科技大学, 2012. |
SUN J Z. Design and implementation of CFD credibility analysis platform based on OSGi[D]. Xi’an: Xidian University, 2012 (in Chinese). | |
16 | 何磊, 赫新, 马戎, 等. 大型CFD软件自动化测试平台的初步设计与实现[J]. 空气动力学学报, 2016, 34(4): 418-425. |
HE L, HE X, MA R, et al. Preliminary design and application of CFD software automatic testing platform[J]. Acta Aerodynamica Sinica, 2016, 34(4): 418-425 (in Chinese). | |
17 | 陈树生, 刘丽媛, 阎超, 等. CFD软件自动化验证确认云平台设计与实现[J]. 航空学报, 2017, 38(3): 120209. |
CHEN S S, LIU L Y, YAN C, et al. Design and realization of automated testing cloud platform for CFD verification and validation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120209 (in Chinese). | |
18 | 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2021, 51(11): 1326-1347. |
CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica (Technologica), 2021, 51(11): 1326-1347 (in Chinese). | |
19 | 陈坚强. 计算流体力学2035愿景[M]. 北京: 科学出版社, 2023. |
CHEN J Q. Computational fluid dynamics 2035 vision in China[M]. Beijing: Science Press, 2023 (in Chinese). | |
20 | ASME. Standard for verification and validation in computational fluid dynamics and heat transfer (Reaffirmed 2016) [M]. The American Society of Mechanical Engineering, 2009. |
21 | HALLISSY B P, HARIHARAN N S, LAIOSA J P, et al. CREATETM-AV quality assurance: best practices for validating and supporting computation-based engineering software: AIAA-2014-0918[R]. Maryland: AIAA, 2014. |
22 | 曹平宽, 梁益华, 齐涵君, 等. 航空CFD软件可信度评价指标体系研究进展[J]. 航空计算技术, 2014, 44(5): 108-110. |
CAO P K, LIANG Y H, QI H J, et al. Research on evaluation index system of CFD software reliability[J]. Aeronautical Computing Technique, 2014, 44(5): 108-110 (in Chinese). | |
23 | 李立, 曹平宽, 成水燕, 等. 基于指标体系的数值风洞软件可信度评价技术研究[J]. 航空计算技术, 2021, 51(6): 55-59, 64. |
LI L, CAO P K, CHENG S Y, et al. Some investigations on building a credibility evaluation index system for numerical wind tunnel software[J]. Aeronautical Computing Technique, 2021, 51(6): 55-59, 64 (in Chinese). | |
24 | SCOTT A M, ROBERT L M. HPCMP CREATETM-AV Kestrel architecture, capabilities, and long term plan for fixed-wing aircraft simulations [C]∥ 54th AIAA Aerospace Sciences Meeting, San Diego: AIAA, 2016. |
25 | 李立, 成水燕, 梁益华, 等. 规范CFD验证和确认算例数据入库的方法: CN115658690A[P]. 2023-01-31. |
LI L, CHENG S Y, LIANG Y H, et al. Standardize the method of CFD verification and validation example data entry: CN115658690A[P]. 2023-01-31 (in Chinese). | |
26 | 国家空间科学数据中心. 我国首个CFD验证与确认数据库依托NSSDC公开发布[EB/OL]. (2023-02-06)[2023-02-06]. . |
National Space Science Data Center. The first national CFD V&V Database was published through NSSDC [EB/OL]. (2023-02-06 )[2023-02-06]. (in Chinese). |
/
〈 |
|
〉 |