电子电气工程与控制

舰载机着舰引导中鲁棒单目视觉相对位姿测量

  • 王秋富 ,
  • 石治国 ,
  • 张倬 ,
  • 孙晓亮 ,
  • 于起峰
展开
  • 1.国防科技大学 空天科学学院 应用力学系,长沙 410073
    2.海军航空大学,兴城 125106

收稿日期: 2024-02-26

  修回日期: 2024-03-28

  录用日期: 2024-06-03

  网络出版日期: 2024-06-14

基金资助

国家自然科学基金(12272404)

Robust monocular relative pose measurement for carrier-based aircraft landing guidance

  • Qiufu WANG ,
  • Zhiguo SHI ,
  • Zhuo ZHANG ,
  • Xiaoliang SUN ,
  • Qifeng YU
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Naval Aeronautical University,Xingcheng 125106,China

Received date: 2024-02-26

  Revised date: 2024-03-28

  Accepted date: 2024-06-03

  Online published: 2024-06-14

摘要

舰机相对位姿鲁棒、高精度测量是舰载机自主着舰引导的关键技术之一。基于关键点检测和Perspective-n-Points(PnP)求解的机载单目位姿测量方法因其配置简单、能耗低、无需数据链支持等优势受到研究人员的广泛关注,但已有方法未考虑关键点检测误差,难以实现鲁棒、高精度相对位姿测量。针对这一问题,将舰船目标建模为稀疏关键点集合,进一步转化相对位姿测量为飞机运动状态估计问题,将二维关键点检测结果作为观测量,构建紧耦合的扩展卡尔曼滤波系统;针对观测噪声统计特性未知的问题,提出基于滑动窗口的观测噪声协方差矩阵自适应估计方法,进一步提升算法精度。仿真实验和真实缩比实验结果表明:方法鲁棒性、位姿解算精度优于传统方法,实现了机载单目视觉着舰引导中鲁棒、高精度的在线相对位姿测量。

本文引用格式

王秋富 , 石治国 , 张倬 , 孙晓亮 , 于起峰 . 舰载机着舰引导中鲁棒单目视觉相对位姿测量[J]. 航空学报, 2024 , 45(23) : 330309 -330309 . DOI: 10.7527/S1000-6893.2024.30309

Abstract

Robust and accurate relative pose measurement is one of the key technologies for shipboard aircraft autonomous landing. The airborne monocular pose estimation methods, based on key-points detection and Perspective-n-Points (PnP) problem solving, have drawn significant attention of researchers for its strengths in ease of deployment, power efficiency and anti-electromagnetic interference, etc. However, the inaccuracy of key-points detection is not considered in the existing methods, which corrupts the precision of the pose identification. To address this problem, a tightly-coupled AEKF-based monocular pose tracking method is proposed. The pose measurement problem is transferred into motion state estimation of the aircraft. An extended Kalman filter system is established taking the key-point detection results as observations, with the carrier represented in form of a sparse key-point set. For the unknown statistics of the observations, an adaptive noise covariance estimation method based on sliding window is put forward. Synthetic and real scaled experiments demonstrate that the proposed method achieves robust and accurate online pose tracking, superior to traditional approaches.

参考文献

1 魏振忠. 舰载机着舰位姿视觉测量技术概述[J]. 测控技术202039(8): 2-6.
  WEI Z Z. Overview of visual measurement technology for landing position and attitude of carrier-based aircraft[J]. Measurement & Control Technology202039(8): 2-6 (in Chinese).
2 胡小兵, 周大鹏, 曲晓雷. 国外舰载机全自动着舰技术综述[J]. 飞机设计202141(2): 32-36.
  HU X B, ZHOU D P, QU X L. Review on full automatic carrier landing technique of foreign shipboard aircraft[J]. Aircraft Design202141(2): 32-36 (in Chinese).
3 GYAGENDA N, HATILIMA J V, ROTH H, et al. A review of GNSS-independent UAV navigation techniques[J]. Robotics and Autonomous Systems2022152: 104069.
4 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报201738(2): 020435.
  ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica201738(2): 020435 (in Chinese).
5 PATRUNO C, NITTI M, PETITTI A, et al. A vision-based approach for unmanned aerial vehicle landing[J]. Journal of Intelligent & Robotic Systems201995(2): 645-664.
6 XU G L, ZHANG Y, JI S Y, et al. Research on computer vision-based for UAV autonomous landing on a ship[J]. Pattern Recognition Letters200930(6): 600-605.
7 CHEN X D, PHANG S K, SHAN M, et al. System integration of a vision-guided UAV for autonomous landing on moving platform[C]∥ 2016 12th IEEE International Conference on Control and Automation (ICCA). Piscataway: IEEE Press, 2016: 761-766.
8 POLVARA R, SHARMA S, WAN J, et al. Towards autonomous landing on a moving vessel through fiducial markers[C]∥ 2017 European Conference on Mobile Robots (ECMR). Piscataway: IEEE Press, 2017: 1-6.
9 GUI Y, GUO P Y, ZHANG H L, et al. Airborne vision-based navigation method for UAV accuracy landing using infrared lamps[J]. Journal of Intelligent & Robotic Systems201372(2): 197-218.
10 XU G L, QI X P, ZENG Q H, et al. Use of Land’s cooperative object to estimate UAV’s pose for autonomous landing[J]. Chinese Journal of Aeronautics201326(6): 1498-1505.
11 XU C, ZHANG L L, CHENG L, et al. Pose estimation from line correspondences: A complete analysis and a series of solutions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(6): 1209-1222.
12 GROMPONE VON GIOI R, JAKUBOWICZ J, MOREL J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201032(4): 722-732.
13 AKINLAR C, TOPAL C. Edlines: Real-time line segment detection by edge drawing (ed)[C]∥2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2011: 2837-2840.
14 周朗明, 钟磬, 张跃强, 等. 运用跑道平面结构化线特征的固定翼无人机视觉导航算法[J]. 国防科技大学学报201638(3): 182-190.
  ZHOU L M, ZHONG Q, ZHANG Y Q, et al. Vision-based landing method using structured line features of runway surface for fixed-wing unmanned aerial vehicles[J]. Journal of National University of Defense Technology201638(3): 182-190 (in Chinese).
15 FU D Y, HAN S C, LIANG B B, et al. Exploring 2D projection and 3D spatial information for aircraft 6D pose[J]. Chinese Journal of Aeronautics202336(8): 258-268.
16 FISCHLER M A, BOLLES R C. Random sample consensus[J]. Communications of the ACM198124(6): 381-395.
17 CARVALHO P C P. Mathematical optimization in computer graphics and vision[M]. Amsterdam: Elsevier/Morgan Kaufmann Publishers, 2008.
18 ZHANG Z, WANG Q F, BI D M, et al. MC-LRF based pose measurement system for shipborne aircraft automatic landing[J]. Chinese Journal of Aeronautics202336(8): 298-312.
19 YU G, CHANG Q, LV W, et al. PP-PicoDet: A better real-time object detector on mobile devices[DB/OL]. arXiv preprint: 2111.00902, 2021.
20 JIANG T, LU P, ZHANG L, et al. RTMPose: Real-time multi-person pose estimation based on MMPose [DB/OL]. arXiv preprint: 2303.07399, 2023.
21 LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: An accurate On) solution to the PnP problem[J]. International Journal of Computer Vision200981(2): 155-166.
22 SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 5686-5696.
23 LI Y J, YANG S, LIU P D, et al. SimCC: A simple coordinate classification perspective for human pose estimation[C]∥ European Conference on Computer Vision. Cham: Springer, 2022: 89-106.
24 DENNINGER M, SUNDERMEYER M, WINKELBAUER D, et al. BlenderProc[DB/OL]. ArXiv preprint1911.01911, 2019.
25 PEI Y, BISWAS S, FUSSELL D S, et al. An elementary introduction to Kalman filtering[J]. Communications of the ACM201962(11): 122-133.
26 王刚, 施忠臣, 尚洋, 等. 结合模板匹配和梯度峰值的对角标志自动提取方法[J]. 光学学报201838(8): 0815014.
  WANG G, SHI Z C, SHANG Y, et al. Automatic extraction of diagonal markers based on template matching and peaks of gradient histogram[J]. Acta Optica Sinica201838(8): 0815014 (in Chinese).
文章导航

/