一种针对多裂纹弹性基础Timoshenko梁振动分析的解析方法
收稿日期: 2024-02-02
修回日期: 2024-03-28
录用日期: 2024-05-30
网络出版日期: 2024-06-14
Analytical method for vibration analysis of multi-cracked Timoshenko beam structures with elastic foundations
Received date: 2024-02-02
Revised date: 2024-03-28
Accepted date: 2024-05-30
Online published: 2024-06-14
针对具有弹性基础的任意多开裂纹Timoshenko阻尼梁结构,基于分布传递函数法(DTFM)的基本形式,提出了一种用于振动分析的新颖的解析方法。对于弹性基础,采用了考虑剪切变形和转动变形的二参数连续弹簧模型;对于梁结构上的局部开裂纹,引入了一种描述裂纹处广义位移不连续的局部附加柔度矩阵,然后建立了弹性基础多裂纹阻尼梁的控制方程;采用增强型分布传递函数形式,对裂纹梁组件和非裂纹组件分别建立了局部边界矩阵,并在全局坐标系中组装成全局边界方程;最后,以积分的形式得到了多裂纹阻尼梁的封闭形式的解析解;应用解析表达式,对裂纹梁结构的模态频率、模态振型及频域响应进行分析。在数值仿真算例中,将本文方法得到的动力学响应结果与参考文献和用有限元方法得到的结果进行了对比,验证了提出方法的正确性。与有限元方法相比,提出的方法对于中、高频动力学响应计算具有更高的精度和效率,可以有效地应用于弹性基础梁的裂纹检测问题中。
伍科 , 彭祺擘 , 武新峰 , 刘朋博 , 寇亚军 . 一种针对多裂纹弹性基础Timoshenko梁振动分析的解析方法[J]. 航空学报, 2024 , 45(22) : 230280 -230280 . DOI: 10.7527/S1000-6893.2024.30280
This study proposes a novel analytical method for vibration analysis of arbitrary multi-crack Timoshenko damping beam structures with elastic foundations based on the Distributed Transfer Function Method (DTFM). A two-parameter continuous spring model considering shear and rotational deformation is adopted for the elastic foundation. For local cracks on the beam structure, a local additional compliance matrix induced by the crack is employed, and the governing equation of the multi-cracked Timoshenko damping beam with an elastic foundation established. Using the augmented distributed transfer function method, we establish the local boundary matrices of the non-cracked and cracked beam components, respectively, and then obtain the global boundary equation in the global coordinate system. Finally, a closed-form analytical solution is derived in integral form, and the natural frequencies, mode shapes, and frequency responses of the cracked beam structures can be derived. In numerical examples, the results from previous papers and the Finite Element Method (FEM) are employed to validate the correctness of the proposed method, and the effect of the cracks and the elastic foundations on dynamic behaviors investigated. With higher computational accuracy and efficiency than the FEM for mid-to-high frequency dynamic responses, the proposed method can be used for crack detection of elastic foundation beams.
1 | WINKLER E. Die Lehre von der Elasticitaet und Festigkeit: Mit besonderer Rücksicht auf ihre Anwendung in der Technik, für polytechnische schulen, bauakademien, ingenieure, maschinenbauer, architecten, etc[M]. Dominicus, 1867 (in German). |
2 | BHATTIPROLU U, BAJAJ A K, DAVIES P. An efficient solution methodology to study the response of a beam on viscoelastic and nonlinear unilateral foundation: Static response[J]. International Journal of Solids and Structures, 2013, 50(14-15): 2328-2339. |
3 | EISENBERGER M, YANKELEVSKY D Z, ADIN M A. Vibrations of beams fully or partially supported on elastic foundations[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(5): 651-660. |
4 | MARZANI A, MAZZOTTI M, VIOLA E, et al. FEM formulation for dynamic instability of fluid-conveying pipe on nonuniform elastic foundation[J]. Mechanics Based Design of Structures and Machines, 2012, 40(1): 83-95. |
5 | ONISZCZUK Z. Free transverse vibrations of elastically connected simply supported double-beam complex system[J]. Journal of Sound and Vibration, 2000, 232(2): 387-403. |
6 | YOKOYAMA T. Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations[J]. Computers & Structures, 1996, 61(6): 995-1007. |
7 | FENG Z H, COOK R D. Beam elements on two-parameter elastic foundations[J]. Journal of Engineering Mechanics, 1983, 109(6): 1390-1402. |
8 | MATSUNAGA H. Vibration and buckling of deep beam-columns on two-parameter elastic foundations[J]. Journal of Sound and Vibration, 1999, 228(2): 359-376. |
9 | CHEN C N. Dqem vibration analyses of non-prismatic shear deformable beams resting on elastic foundations[J]. Journal of Sound and Vibration, 2002, 255(5): 989-999. |
10 | MALEKZADEH P, KARAMI G. A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations[J]. Applied Mathematical Modelling, 2008, 32(7): 1381-1394. |
11 | MA X, BUTTERWORTH J W, CLIFTON G C. Static analysis of an infinite beam resting on a tensionless Pasternak foundation[J]. European Journal of Mechanics- A, 2009, 28(4): 697-703. |
12 | PAPADOPOULOS C A, DIMAROGONAS A D. Coupled longitudinal and bending vibrations of a rotating shaft with an open crack[J]. Journal of Sound and Vibration, 1987, 117(1): 81-93. |
13 | KHIEM N T, TOAN L K. A novel method for crack detection in beam-like structures by measurements of natural frequencies[J]. Journal of Sound and Vibration, 2014, 333(18): 4084-4103. |
14 | LIU J, ZHU W D, CHARALAMBIDES P G, et al. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips[J]. Journal of Sound and Vibration, 2016, 382: 274-290. |
15 | HAN H S, LIU L, CAO D Q. Analytical approach to coupled bending-torsional vibrations of cracked Timoshenko beam?[J]. International Journal of Mechanical Sciences, 2020, 166: 105235. |
16 | ZHAO X, HU Q J, CROSSLEY W, et al. Analytical solutions for the coupled thermoelastic vibrations of the cracked Euler-Bernoulli beams by means of Green’s functions[J]. International Journal of Mechanical Sciences, 2017, 128-129: 37-53. |
17 | ZHAO X, ZHAO Y R, GAO X Z, et al. Green?s functions for the forced vibrations of cracked Euler-Bernoulli beams[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 155-175. |
18 | ATTAR M. A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions[J]. International Journal of Mechanical Sciences, 2012, 57(1): 19-33. |
19 | HSU M H. Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(1): 1-17. |
20 | MATBULY M S, RAGB O, NASSAR M. Natural frequencies of a functionally graded cracked beam using the differential quadrature method[J]. Applied Mathematics and Computation, 2009, 215(6): 2307-2316. |
21 | YANG B, TAN C A. Transfer functions of one-dimensional distributed parameter systems[J]. Journal of Applied Mechanics, 1992, 59(4): 1009-1014. |
22 | YANG B. Distributed transfer function analysis of complex distributed parameter systems[J]. Journal of Applied Mechanics, 1994, 61(1): 84-92. |
23 | ZHOU J, YANG B. Strip distributed transfer function method for analysis of plates[J]. International Journal for Numerical Methods in Engineering, 1996, 39(11): 1915-1932. |
24 | LIU S B, YANG B G. A closed-form analytical solution method for vibration analysis of elastically connected double-beam systems[J]. Composite Structures, 2019, 212: 598-608. |
25 | NOH K, YANG B. An augmented state formulation for modeling and analysis of multibody distributed dynamic systems[J]. Journal of Applied Mechanics, 2014, 81(5): 051011. |
26 | YANG B G, LIU S B. Closed-form analytical solutions of transient heat conduction in hollow composite cylinders with any number of layers[J]. International Journal of Heat and Mass Transfer, 2017, 108: 907-917. |
27 | FANG H F, YANG B G, DING H L, et al. Dynamic analysis of large in-space deployable membrane antennas[C]∥13th International Congress on Sound and Vibration (ICSV13-Vienna). Washington,D.C.:NASA,2006. |
28 | YANG B G, ZHANG Y C. A new method for mid- to high-frequency vibration analyses of beam structures[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2019. |
29 | GIRIJA VALLABHAN C V, DAS Y C. Modified Vlasov model for beams on elastic foundations[J]. Journal of Geotechnical Engineering, 1991, 117(6): 956-966. |
30 | TADA H, PARIS P C, IRWIN G R. The stress analysis of cracks[M]. New York: ASME, 2000. |
31 | CHEN W Q, Lü C F, BIAN Z G. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation[J]. Applied Mathematical Modelling, 2004, 28(10): 877-890. |
32 | DE ROSA M A, MAURIZI M J. The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams—exact solution[J]. Journal of Sound and Vibration, 1998, 212(4): 573-581. |
33 | ATTAR M, KARRECH A, REGENAUER-LIEB K. Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model[J]. Journal of Sound and Vibration, 2014, 333(11): 2359-2377. |
/
〈 |
|
〉 |