论 文

电离层闪烁环境下PPP/INS组合导航性能分析

  • 程建华 ,
  • 程思翔 ,
  • 齐兵 ,
  • 范世龙 ,
  • 赵国晶 ,
  • 陈思成
展开
  • 哈尔滨工程大学 智能科学与工程学院,哈尔滨 150001
.E-mail: chengsx1996@126.com

收稿日期: 2024-05-14

  修回日期: 2024-05-22

  录用日期: 2024-06-07

  网络出版日期: 2024-06-11

基金资助

国家自然科学基金(42204035);国家重点研发计划(2021YFB3901300);黑龙江省杰出青年基金(JC2018019)

PPP/INS integrated navigation performance analysis in ionospheric scintillation environment

  • Jianhua CHENG ,
  • Sixiang CHENG ,
  • Bing QI ,
  • Shilong FAN ,
  • Guojing ZHAO ,
  • Sicheng CHEN
Expand
  • College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China

Received date: 2024-05-14

  Revised date: 2024-05-22

  Accepted date: 2024-06-07

  Online published: 2024-06-11

Supported by

National Natural Science Foundation of China(42204035);National Key Research and Development Program of China(2021YFB3901300);the Science Fund for Distinguished Young Scholars of Heilongjiang Province(JC2018019)

摘要

低纬地区和极区常见的电离层闪烁可对全球卫星导航系统信号造成随机扰动,在传统精密单点定位(PPP)模型中引入未模型化电离层散射残差,劣化PPP定位性能。惯性导航系统(INS)凭借其短期高精度、不受外界干扰影响的特点,可与PPP构成PPP/INS组合导航系统,提升复杂环境中导航性能。然而,当前电离层闪烁环境中INS辅助PPP机理研究和性能分析尚不完善。因此,从PPP/INS松、紧组合模型和参数估计入手,分析电离层闪烁对松、紧组合数据处理的影响。最后,采用香港2个测站的实测电离层闪烁期间的GPS观测数据和仿真INS数据验证电离层闪烁环境下PPP/INS性能。理论分析和实验表明,PPP/INS紧组合系统在电离层闪烁环境中性能显著优于松组合。在实验期间的电离层闪烁干扰下,PPP/INS紧组合相对于松组合分别提升56.6%和34.0%的水平和垂直定位精度,77.5%和79.5%的水平和垂直速度精度,85.6%、49.6%和88.9%的俯仰、横滚和航向精度。

本文引用格式

程建华 , 程思翔 , 齐兵 , 范世龙 , 赵国晶 , 陈思成 . 电离层闪烁环境下PPP/INS组合导航性能分析[J]. 航空学报, 2024 , 45(S1) : 730676 -730676 . DOI: 10.7527/S1000-6893.2024.30676

Abstract

Ionospheric scintillations in low latitude and polar regions can introduce random interference in GNSS signals, deteriorating the conventional PPP performance with the unmodelled ionospheric scattering residual. The short-term high accuracy and interference-free INS can assist PPP to form PPP/INS integrated navigation system, improving the navigation performance in the sophisticated environment. However, the mechanism and performance of INS assisting PPP with scintillations requires further research. Thus, starting with the model and estimation process, impacts of ionospheric scintillation on the data processing of PPP/INS tightly and loosely coupled systems is analyzed. Then, we apply scintillation-impacted GPS data from 2 stations in Hong Kong and simulated INS data to validate the PPP/INS performance. Theoretical analysis and experiments indicate the superiority of the tightly coupled system in the ionospheric scintillation environment.. During the experiment, the tightly coupled system improves 56.6% and 34.0% horizontal and vertical positioning accuracy, respectively; 77.5% and 79.5% horizontal and vertical velocity accuracy, respectively; 85.6%, 49.6% and 88.9% pitch, roll and yaw accuracy, respectively as compared with the loosely coupled system.

参考文献

1 BARROS D, TAKAHASHI H, WRASSE C M, et al. Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America[J]. Annales Geophysicae201836(1): 91-100.
2 KELLEY M C. The earth’s ionosphere: electrodynamic and plasma physics [M]. 2nd ed. New York: Elsevier, 2009.
3 WERNIK A W, ALFONSI L, MATERASSI M. Ionospheric irregularities, scintillation and its effect on systems[J]. Acta Geophysica Polonica200452(2): 237-249.
4 AA E C, HUANG W G, LIU S Q, et al. Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017[J]. Space Weather201816(3): 321-331.
5 王格, 王宁波, 李子申, 等. 地磁暴期间北半球高纬度地区电离层变化特征及对精密定位的影响[J]. 空间科学学报202141(2): 261-272.
  WANG G, WANG N B, LI Z S, et al. Impact of geomagnetic storms on ionosphere variability and precise point positioning application in high latitudes of the Northern Hemisphere[J]. Chinese Journal of Space Science202141(2): 261-272 (in Chinese).
6 KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE Transactions on Aerospace and Electronic Systems198723(3): 325-331.
7 HERNáNDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998[J]. Journal of Geodesy200983(3): 263-275.
8 DI GIOVANNI G, RADICELLA S M. An analytical model of the electron density profile in the ionosphere[J]. Advances in Space Research199010(11): 27-30.
9 MORENO B, REDICELLA S, DE LACY M C, et al. A super bubble detected by dense GPS network at East Asian longitudes[J]. GPS Solutions201115(4): 381-390.
10 ZHANG X H, ZHU F, ZHANG Y X, et al. The improvement in integer ambiguity resolution with INS aiding for kinematic precise point positioning[J]. Journal of Geodesy201993(7): 993-1010.
11 YANG L, LI Y, WU Y L, et al. An enhanced MEMS-INS/GNSS integrated system with fault detection and exclusion capability for land vehicle navigation in urban areas[J]. GPS Solutions201418(4): 593-603.
12 CHENG S X, CHENG J H, ZANG N, et al. A sequential student’s t-based robust Kalman filter for multi-GNSS PPP/INS tightly coupled model in the urban environment[J]. Remote Sensing202214(22): 5878.
13 LUO X M, GU S F, LOU Y D, et al. Better thresholds and weights to improve GNSS PPP under ionospheric scintillation activity at low latitudes[J]. GPS Solutions202024(1): 1-12.
14 AQUINO M, MONICO J F G, DODSON A H, et al. Improving the GNSS positioning stochastic model in the presence of ionospheric scintillation[J]. Journal of Geodesy200983(10): 953-966.
15 LI C D, HANCOCK C M, VADAKKE VEETTIL S, et al. Mitigating the scintillation effect on GNSS signals using MP and ROTI[J]. Remote Sensing202214(23): 6089.
16 LUO X M, DU J F, GALERA MONICO J F, et al. ROTI-based stochastic model to improve GNSS precise point positioning under severe geomagnetic storm activity[J]. Space Weather202220(7): e2022SW003114.
17 WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Advances in the Astronautical Sciences199276(pt 2): 1647-1660.
18 KOUBA J, HéROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS Solutions20015(2): 12-28.
19 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019.
  YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi’an: Northwestern Polytechnical University Press, 2019 (in Chinese).
20 LIU S, SUN F P, ZHANG L D, et al. Tight integration of ambiguity-fixed PPP and INS: model description and initial results[J]. GPS Solutions201620(1): 39-49.
21 GAN X L, LI W, YANG L, et al. State-space measurement update for GNSS/INS integrated navigation[J]. Mathematical Problems in Engineering2020(1): 3675824.
22 PI X, MANNUCCI A J, LINDQWISTER U J, et al. Monitoring of global ionospheric irregularities using the Worldwide GPS Network[J]. Geophysical Research Letters199724(18): 2283-2286.
文章导航

/