高性能伺服电机泵关键技术及挑战
收稿日期: 2024-01-24
修回日期: 2024-02-19
录用日期: 2024-04-19
网络出版日期: 2024-06-11
基金资助
某电机泵技术研究(国家级项目);中央高校基本科研业务费专项资金(100062023911)
Key technologies and challenges of high⁃performance servo⁃motor⁃pumps
Received date: 2024-01-24
Revised date: 2024-02-19
Accepted date: 2024-04-19
Online published: 2024-06-11
Supported by
A Motor-Pump Technology Research Project (National Project);Fundamental Research Funds for the Central Universities(100062023911)
伺服电机泵是电静液作动器的核心动力和控制部组件,其制约了作动器的极限输出性能。国际知名液压技术研究机构,如穆格、派克等,已推出了用于航空航天和高端民用装备的系列产品。近年来,中国多个科研机构及高等院校对高性能伺服电机泵开展了多方面技术研究,取得了一些突破性的进展,但关键技术仍不成熟。从航空航天应用特点出发,结合机器人、航海以及工业设备等多个领域,对高性能伺服电机泵相关研究进行了综述,总结了其发展和应用情况,分析了其在高端应用场景下的高功密、高动态、长寿命、低噪音和智能化等关键性能需求,基于此讨论了其在机理研究、设计理论和组件强化等方面的技术难点,为高性能电静液作动和核心部组件技术的进步提供支撑。
吕定翀 , 赵守军 , 曾思 , 付剑 , 胡心童 , 刘会祥 , 苗克非 , 付永领 . 高性能伺服电机泵关键技术及挑战[J]. 航空学报, 2024 , 45(15) : 630225 -630225 . DOI: 10.7527/S1000-6893.2024.30225
Servo Motor Pumps (SMP) play a decisive role as central power and control elements for the performance limits in Electro-Hydrostatic Actuators (EHAs). Internationally renowned hydraulic companies such as Moog and Parker have introduced SMPs for aerospace and high value Industrial applications. In recent years, Chinese research in the field of high-performance SMPs has made some progress, but is still far from mature. This article provides a comprehensive overview of SMPs in terms of aerospace applications and also considers other fields such as robotics, marine and industrial applications. Based on the analyzed applications and developments, the five key performance characteristics such as high power-to-weight ratio, high dynamic range, long service life, low noise and intelligence are summarized, and the difficulties in theory and key technologies are discussed to make suggestions for high-performance EHAs and their key components.
1 | ZHAO S J, HE J, ZHANG Y Q. The study on the dynamic capability of an electro-hydrostatic actuator to drive a large inertia load[C]∥2016 IEEE International Conference on Aircraft Utility Systems. Piscataway: IEEE Press, 2016: 836-841. |
2 | ZHAO J A, FU J, LI Y C, et al. Flow characteristics of integrated motor-pump assembly with phosphate ester medium for aerospace electro-hydrostatic actuators[J]. Chinese Journal of Aeronautics, 2023, 36(9): 392-407. |
3 | BATISTA T A R. Modeling and analysis of an electro-hydrostatic system using asymmetrical cylinder for industrial and mobile machinery[D]. Florianópolis: Universidade Federal de Santa Catarina, 2018: 53. |
4 | MARé J C. Aerospace actuators 2: Signal-by-wire and power-by-wire[M]. London: ISTE Ltd., 2017: ix-xxvi. |
5 | BRUZZESE C, TESSAROLO A, MAZZUCA T, et al. A closer look to conventional hydraulic ship actuator systems and the convenience of shifting to (possibly) all-electric drives[C]∥2013 IEEE Electric Ship Technologies Symposium. Piscataway: IEEE Press, 2013: 220-227. |
6 | 廖健, 何琳, 陈宗斌, 等. 潜艇操舵系统噪声综述[J]. 中国舰船研究, 2022, 17(5): 74-84. |
LIAO J, HE L, CHEN Z B, et al. Overview of submarine steering system noise[J]. Chinese Journal of Ship Research, 2022, 17(5): 74-84 (in Chinese). | |
7 | KARANOVI? V, JOCANOVI? M, JOVANOVI? V. Review of development stages in the conceptual design of an electro hydrostatic actuator for robotics[J]. Acta Polytechnica Hungarica, 2014, 11(5): 59-79. |
8 | RAGHAVENDRA D R. Electrohydraulic servo systems[M]. Singapore: Springer, 2023: 43-90. |
9 | 付永领, 李祝锋, 安高成, 等. 电液泵发展现状与关键技术综述[J]. 机床与液压, 2012, 40(1): 143-149, 160. |
FU Y L, LI Z F, AN G C, et al. State of the art and core techniques of edropump[J]. Machine Tool & Hydraulics, 2012, 40(1): 143-149, 160 (in Chinese). | |
10 | CROWDER R, MAXWELL C. Simulation of a prototype electrically powered integrated actuator for civil aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1997, 211(6): 381-394. |
11 | ZHU D M, WANG M K, FU Y L. Design and validation of electro-hydraulic pumping unit for smart manufacturing[J/OL]. The International Journal of Advanced Manufacturing Technology, 2022. (2022-04-19)[2024-01-24]. . |
12 | 赵升吨, 张宗元, 徐凡, 等. 电磁直驱式液压泵及其发展趋势[J]. 液压与气动, 2014, 38(2): 1-9. |
ZHAO S D, ZHANG Z Y, XU F, et al. Direct drive motor-pump and its development trend[J]. Chinese Hydraulics & Pneumatics, 2014, 38(2): 1-9 (in Chinese). | |
13 | MARé J C, FU J. Review on signal-by-wire and power-by-wire actuation for more electric aircraft[J]. Chinese Journal of Aeronautics, 2017, 30(3): 857-870. |
14 | GOLJAT S, LOVREC D, TI? V. Advantages of pump controlled electro hydraulic actuators[C]∥New Technologies, Development and Application IV. 2021: 774-780. |
15 | LIU L, ZHANG P, ZHAO S J, et al. A test method for the static and dynamic characteristics of servo-motor-pumps[C]∥2018 CSAA/IET International Conference on Aircraft Utility Systems. London: Institution of Engineering and Technology, 2018: 129-133. |
16 | 蔡向朝. 电机泵国内外研究现状分析[J]. 液压气动与密封, 2018, 38(9): 1-3, 7. |
CAI X C. Analysis on the research status of motor pump at home and abroad[J]. Hydraulics Pneumatics & Seals, 2018, 38(9): 1-3, 7 (in Chinese). | |
17 | KARGOV A, WERNER T, PYLATIUK C, et al. Development of a miniaturised hydraulic actuation system for artificial hands[J]. Sensors and Actuators A: Physical, 2008, 141(2): 548-557. |
18 | A-6B2 Electrohydrostatic Actuation Committee. Aerospace fluid power electrohydrostatic module, design, performance and test recommendations: ARP 6154 [S]. Warrendale: SAE International, 2017. |
19 | HUANG X Y, GOODMAN A, GERADA C, et al. Design of a five-phase brushless DC motor for a safety critical aerospace application[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3532-3541. |
20 | KUMAR M. A survey on electro hydrostatic actuator: Architecture and way ahead[J]. Materials Today: Proceedings, 2021, 45(7): 6057-6063. |
21 | ALLE N, HIREMATH S S, MAKARAM S, et al. Review on electro hydrostatic actuator for flight control[J]. International Journal of Fluid Power, 2016, 17(2): 125-145. |
22 | ZHAO J A, FU Y L, MA J M, et al. Review of cylinder block/valve plate interface in axial piston pumps: Theoretical models, experimental investigations, and optimal design[J]. Chinese Journal of Aeronautics, 2021, 34(1): 111-134. |
23 | HUANG X Y, BRADLEY K, GOODMAN A, et al. Fault-tolerant brushless DC motor drive for electro-hydrostatic actuation system in aerospace application[C]∥2006 IEEE Industry Applications Society Annual Meeting. Piscataway: IEEE Press, 2006: 473-480. |
24 | 石宏康. 基于碳化硅功率器件的永磁同步电机驱动系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 5-8. |
SHI H K. Research on permanent magnet synchronous motor drive system based on silicon carbide power device[D]. Harbin: Harbin Institute of Technology, 2018: 5-8 (in Chinese). | |
25 | 中国航天工业总公司. 流量电液伺服阀通用规范: [S]. 北京: 中国航天工业总公司, 1996. |
China Aerospace Industry Corp. General specification for flow electrohydraulic servo valve: [S]. Beijing: China Aerospace Industry Corp., 1996 (in Chinese). | |
26 | 北京华德液压工业集团有限责任公司, 浙江大学, 深圳市科斯腾液压设备有限公司, 等. 液压传动泵、马达稳态性能的试验方法标准: [S]. 北京: 中国标准出版社, 2023. |
Beijing Huade Hydraulic Industrial Group Co., Ltd., Zhejiang University, Shenzhen Kesiteng Hydraulic Equipment Co., Ltd., et al. Hydraulic fluid power - Pumps, motors - Methods of testing steady-state performance: [S]. Beijing: Standards Press of China, 2023 (in Chinese). | |
27 | 北京华德液压工业集团有限责任公司, 贵州力源液压股份有限公司, 北京机械工业自动化研究所. 液压轴向柱塞泵: [S]. 北京: 机械工业出版社, 2006. |
Beijing Huade Hydraulic Industrial Group Co., Ltd., Guizhou Liyuan Hydraulic Co., Ltd., Beijing Research Institute of Automation for Machinery Industry Co., Ltd. Hydraulic axial piston pumps: [S]. Beijing: China Machine Press, 2006 (in Chinese). | |
28 | 西安微电机研究所, 淄博得普达电机有限公司, 贵州航天林泉电机有限公司, 等. 交流伺服电动机通用技术条件: [S]. 北京: 中国标准出版社, 2015. |
Xi'an Micromotor Research Institute Co., Ltd., Zibo Depuda Electric Motor Co., Ltd., Guizhou Aerospace Linquan Motor Co., Ltd., et al. General specification for AC servomotors: [S]. Beijing: Standards Press of China, 2015 (in Chinese). | |
29 | 腾益登. 技术前沿-综述电液执行器EHA市场的引领者[EB/OL]. 上海: iHydrostatics静液压, 2019. (2019-04-15)[2024-01-24]. . |
TENG Y D. Technology frontier: A comprehensive overview of the leaders in the electro-hydraulic actuator (EHA) market[EB/OL]. Shanghai: iHydrostatics, 2019. (2019-04-15)[2024-01-24]. (in Chinese). | |
30 | Inc Moog. Modular electrohydrostatic actuation system[EB/OL]. East Aurora: Moog Inc., 2020. (2020-10)[2024-01-24]. . |
31 | Inc Moog. Compact electrohydrostatic actuation system[EB/OL]. East Aurora: Moog Inc., 2023. (2023-02)[2024-01-24]. . |
32 | Parker Hannifin Corp. Launching innovation[EB/OL]. Cleveland: Parker Hannifin Corp., 2017. [2024-01-24]. . |
33 | Parker Hannifin Corp. Parker compact electro-hydraulic actuator (EHA)[EB/OL]. Cleveland: Parker Hannifin Corp., 2011. (2011-04-01)[2024-01-24]. . |
34 | BAMSHAD H, JANG S W, JEONG H M, et al. Comparison between genetic programming and dynamic models for compact electrohydraulic actuators[J]. Machines, 2022, 10(10): 961. |
35 | Corp Eaton. Delivering power from source to actuation[EB/OL]. Dublin: Eaton Corp., 2020. (2020-03)[2024-01-24]. . |
36 | Corp Eaton. Integrated motor pump[EB/OL]. Dublin: Eaton Corp., 2000. [2024-01-24]. . |
37 | Corp Eaton. Power units[EB/OL]. Dublin: Eaton Corp., 2002. (2002-04)[2024-01-24]. . |
38 | Group Voith. CLDP servo drives: Maximum flexibility and high energy efficiency for test benches[EB/OL]. Heidenheim: Voith Group, 2019. (2019-05-06)[2024-01-24]. . |
39 | Group Voith. DrivAx CLDP: Self-contained servo drives[EB/OL]. Heidenheim: Voith Group, 2022. [2024-01-24]. . |
40 | Bosch Rexroth AG. Servo-hydraulic actuator: SHA[EB/OL]. Lohr am Main: Bosch Rexroth AG, 2021. (2021-04)[2024-01-24]. . |
41 | Hoerbiger Automatisierungstechnik Gmbh. ePrAX: The servo drive[EB/OL]. Altenstadt: Hoerbiger Automatisierungstechnik Gmbh, 2016. [2024-01-24]. . |
42 | CHAO Q, ZHANG J H, XU B, et al. A review of high-speed electro-hydrostatic actuator pumps in aerospace applications: Challenges and solutions[J]. Journal of Mechanical Design, 2019, 141(5): 050801. |
43 | 马纪明, 付永领, 李军, 等. 一体化电动静液作动器(EHA)的设计与仿真分析[J]. 航空学报, 2005, 26(1): 79-83. |
MA J M, FU Y L, LI J, et al. Design, simulation and analysis of integrated electrical hydrostatic actuator[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 79-83 (in Chinese). | |
44 | 付永领, 邵云滨, 齐海涛, 等. 集成电动静液作动系统理论与技术[J]. 液压与气动, 2015, 39(5): 1-9. |
FU Y L, SHAO Y B, QI H T, et al. Integrated electro-hydrostatic actuator system: Theory and technology[J]. Chinese Hydraulics & Pneumatics, 2015, 39(5): 1-9 (in Chinese). | |
45 | SITZ J R. F-18 systems research aircraft facility[C]∥1992 Aerospace Technology Conference and Exposition. Warrendale: SAE International, 1992: 922063. |
46 | JENSEN S C, JENNEY G D, DAWSON D. Flight test experience with an electromechanical actuator on the F-18 systems research aircraft[C]∥19th Conference on Digital Avionics Systems. Piscataway: IEEE Press, 2000: 2.E.3. |
47 | FU J, FU Y L, ZHANG P. Status and development of electrically powered actuators for aerospace application[C]∥2018 CSAA/IET International Conference on Aircraft Utility Systems. London: Institution of Engineering and Technology, 2018: 270-275. |
48 | 付永领, 韩旭, 杨荣荣, 等. 电动静液作动器设计方法综述[J]. 北京航空航天大学学报, 2017, 43(10): 1939-1952. |
FU Y L, HAN X, YANG R R, et al. Review on design method of electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1939-1952 (in Chinese). | |
49 | 关栋, 杨小辉, 刘更, 等. 功率电传作动系统用电机关键技术及其发展趋势[J]. 微特电机, 2012, 40(5): 71-75. |
GUAN D, YANG X H, LIU G, et al. Development trend and key technologies of the electrical motor for power-by-wire actuator system[J]. Small & Special Electrical Machines, 2012, 40(5): 71-75 (in Chinese). | |
50 | KAMINAGA H, AMARI T, NIWA Y, et al. Electro-hydrostatic actuators with series dissipative property and their application to power assist devices[C]∥2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway: IEEE Press, 2010: 76-81. |
51 | XIA Q C, LI H, SONG N, et al. Research on flexible collapsible fluid-driven bionic robotic fish[J]. Ocean Engineering, 2023, 276: 114203. |
52 | KAMINAGA H, ONO J, NAKASHIMA Y, et al. Development of backdrivable hydraulic joint mechanism for knee joint of humanoid robots[C]∥2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2009: 1577-1582. |
53 | KAMINAGA H, AMARI T, NIWA Y, et al. Development of knee power assist using backdrivable electro-hydrostatic actuator[C]∥2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2010: 5517-5524. |
54 | ALFAYAD S, OUEZDOU F B, NAMOUN F, et al. High performance integrated electro-hydraulic actuator for robotics - Part I: Principle, prototype design and first experiments[J]. Sensors and Actuators A: Physical, 2011, 169(1): 115-123. |
55 | 查乐, 于安斌, 龚佳敏, 等. 集成电机泵喷器运用于潜艇上的一种方案[J]. 中国水运, 2015, 15(3): 85-86. |
ZHA L, YU A B, GONG J M, et al. A scheme for the application of integrated motor pump jet on submarines[J]. China Water Transport, 2015, 15(3): 85-86 (in Chinese). | |
56 | 王超, 汪国胜, 李睿, 等. 坦克装甲车辆主动悬挂结构技术发展综述[J]. 兵工学报, 2020, 41(12): 2579-2592. |
WANG C, WANG G S, LI R, et al. Review of state of the art of active suspension structure technology of tank and armored vehicle[J]. Acta Armamentarii, 2020, 41(12): 2579-2592 (in Chinese). | |
57 | 屠跃跃, 李鹏忠, 杨勇. 液体静压导轨在龙门移动式加工中心的应用[J]. 机械研究与应用, 2013, 26(2): 66-68. |
TU Y, LI P Z, YANG Y. Application of hydrostatic guideway in CNC gantry moving type machining center[J]. Mechanical Research & Application, 2013, 26(2): 66-68 (in Chinese). | |
58 | WABNER M, LAW M, IHLENFELDT S. Dynamic modelling of an electro-hydraulic actuator to isolate machine tools from ground vibrations[C]∥11th International Conference on High Speed Machining. Prague: MM Science Journal, 2014: HSM 2014-14038. |
59 | 李婉辰. 直驱式自行火炮弹药输送车载供弹电液伺服系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 4-7. |
LI W C. Research on the electro hydraulic servo system of direct drive type self propelled artillery ammunition transportation vehicle[D]. Harbin: Harbin Institute of Technology, 2016: 4-7 (in Chinese). | |
60 | 付永领, 王明康, 李林杰, 等. 一种用于坦克炮的集成化电静液伺服作动器: 中国, ZL202010620316.6[P]. 2021-08-24. |
FU Y L, WANG M K, LI L J, et al. An integrated electro-hydrostatic servo actuator for tank guns: China, ZL202010620316.6[P]. 2021-08-24 (in Chinese). | |
61 | 冀宏, 张立升, 王峥嵘, 等. 电动液压动力单元的一体化演变[J]. 机床与液压, 2011, 39(19): 117-120. |
JI H, ZHANG L S, WANG Z R, et al. Development of integration of electro-hydraulic power unit[J]. Machine Tool & Hydraulics, 2011, 39(19): 117-120 (in Chinese). | |
62 | 刘磊. 空天飞机重量估算方法研究[D]. 南京: 南京航空航天大学, 2016: 1-3. |
LIU L. Study on weight estimation method for aerospace plane[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 1-3 (in Chinese). | |
63 | 宋东彬, 闫炬壮, 杨文将, 等. 面向电动航空的高温超导电机技术研究发展[J]. 航空学报, 2023, 44(9): 027469. |
SONG D B, YAN J Z, YANG W J, et al. Technology development of high temperature superconducting machine for electric aviation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027469 (in Chinese). | |
64 | 傅恒志. 航空航天材料定向凝固[M]. 北京: 科学出版社, 2015: 1-2. |
FU H Z. Directional solidification processing of aero-high temperature materials[M]. Beijing: China Science Publishing & Media Ltd., 2015: 1-2 (in Chinese). | |
65 | BOSSCHE D V D. The A380 flight control electrohydrostatic actuators, achievements and lessons learnt[C]∥25th International Congress of the Aeronautical Sciences. Bonn: International Council of the Aeronautical Sciences, 2006: 7.4.1. |
66 | XUE L X, WU S, XU Y Z, et al. A simulation-based multi-objective optimization design method for pump-driven electro-hydrostatic actuators[J]. Processes, 2019, 7(5): 274. |
67 | DAVIES P, REAUD Y, DUSSUD L, et al. Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations[J]. Ocean Engineering, 2011, 38(17-18): 2208-2214. |
68 | WANG J, GAO F, ZHANG Y. High power density drive system of a novel hydraulic quadruped robot[C]∥38th Mechanisms and Robotics Conference. New York: ASME, 2015: DETC 2014-34804. |
69 | SAKAGAMI Y, WATANABE R, AOYAMA C, et al. The intelligent ASIMO: System overview and integration[C]∥2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2002: 2478-2483. |
70 | IBRAHIM A A H, AMMOUNAH A, ALFAYAD S, et al. Hydraulic robotic leg for HYDRO?D robot: Modeling and control[J]. Journal of Robotics and Mechatronics, 2022, 34(3): 576-587. |
71 | 汤伟, 黄勇, 傅澔. 推力矢量对飞机大迎角动态气动特性的影响[J]. 航空学报, 2018, 39(4): 121648. |
TANG W, HUANG Y, FU H. Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 121648 (in Chinese). | |
72 | 杨弘枨. 推力矢量伺服系统智能建模与控制方法研究[D]. 北京: 中国运载火箭技术研究院, 2023: 3. |
YANG H C. Research on intelligent modeling and control methods for thrust vector control systems[D]. Beijing: China Academy of Launch Vehicle Technology, 2023: 3 (in Chinese). | |
73 | 付永领, 李祝锋, 祁晓野, 等. 轴向柱塞式电液泵能量转化效率研究[J]. 机械工程学报, 2014, 50(14): 204-212. |
FU Y L, LI Z F, QI X Y, et al. Research on the energy conversion efficiency of axial piston electro-hydraulic pump[J]. Journal of Mechanical Engineering, 2014, 50(14): 204-212 (in Chinese). | |
74 | GARRISON M, STEFFAN S. Two-fault tolerant electric actuation systems for space applications[C]∥42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
75 | ZHANG P, ZHAO S J, ZENG S, et al. A triplex electro-hydrostatic actuator with embedded servo-motor-pumps and power electronics[C]∥9th International Conference on Recent Advances in Aerospace Actuation Systems and Components. Toulouse: INSA de Toulouse, 2023: 7-11. |
76 | IYAGHIGBA S D, ALI F, JENNIONS I K. A review of diagnostic methods for hydraulically powered flight control actuation systems[J]. Machines, 2023, 11(2): 165. |
77 | 闫楚良. 中国飞机结构寿命可靠性评定技术的发展与展望[J]. 航空学报, 2022, 43(10): 527869. |
YAN C L. Development and prospect of aircraft structural life reliability assessment technology in China[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527869 (in Chinese). | |
78 | 兰雪. GO-FLOW法在电静液作动器可靠性分析中的应用研究[D]. 大连: 大连理工大学, 2017: 7-8. |
LAN X. Research on the application of GO-FLOW methodology in the reliability analysis of electro-hydrostatic actuator[D]. Dalian: Dalian University of Technology, 2017: 7-8 (in Chinese). | |
79 | 荘露, 陆中, 宋海靖, 等. 基于故障注入模型的电传飞控系统安全性分析[J]. 航空学报, 2023, 44(9): 327329. |
ZHUANG L, LU Z, SONG H J, et al. Safety analysis for fly-by-wire system based on fault injection model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 327329 (in Chinese). | |
80 | 赵杰彦. 基于数字孪生的电静液作动器故障检测与容错控制方法研究[D]. 南京: 南京理工大学, 2021: 1-8. |
ZHAO J Y. Research on fault detection and fault-tolerant control methods for electro-hydraulic actuators based on digital twins[D]. Nanjing: Nanjing University of Science & Technology, 2021: 1-8 (in Chinese). | |
81 | 赵静静. 基于GO法的电静液作动器可靠性研究[D]. 大连: 大连理工大学, 2014: 1-4. |
ZHAO J J. Reliability research on electro hydrostatic actuator based on GO methodology[D]. Dalian: Dalian University of Technology, 2014: 1-4 (in Chinese). | |
82 | 吕明明, 谢华伟, 钟伟, 等. 船舶舵机电静液作动器的分数阶线性自抗扰控制[J]. 兵工学报, 2024, 45(5): 1514-1522. |
Lü M M, XIE H W, ZHONG W, et al. Fractional order linear active disturbance rejection control for electro-hydrostatic actuator of ship rudder[J]. Acta Armamentarii, 2024, 45(5): 1514-1522 (in Chinese). | |
83 | PAVLOV A I, POLYANIN I A, KOZLOV K E. Improving the reliability of hydraulic drives components[J]. Procedia Engineering, 2017, 206: 1629-1635. |
84 | 焦宗夏, 吴帅, 李洋, 等. 液压元件及系统智能化发展现状及趋势思考[J]. 机械工程学报, 2023, 59(20): 357-384. |
JIAO Z X, WU S, LI Y, et al. Development status and trends of the intelligence of hydraulic components and systems[J]. Journal of Mechanical Engineering, 2023, 59(20): 357-384 (in Chinese). | |
85 | HAMMETT R, COAKLEY M, SEVIGNY D, et al. Automatic performance monitoring enhances Seawolf submarine ship control maintainability[J]. Naval Engineers Journal, 1998, 110(2): 49-59. |
86 | GRANIERI M N, LEVY F J. Embedded diagnostic system design using an automated diagnostic tool set[C]∥1993 International Automatic Testing Conference. Piscataway: IEEE Press, 1993: 645-649. |
87 | DAUGHAN M G. Seawolf submarine ship control system: A case study of a fault-tolerant design[J]. Naval Engineers Journal, 1994, 106(1): 54-70. |
88 | 吴皓文, 华强, 付秋华. 面向多维感知系统的设备模型方法研究[J]. 中国安防, 2022, 17(4): 102-105. |
WU H W, HUA Q, FU Q H. Research on device model method for multidimensional sensing system[J]. China Security & Protection, 2022, 17(4): 102-105 (in Chinese). | |
89 | 刘沁. 船舶舵机液压系统的智能故障诊断方法研究[D]. 北京: 北京交通大学, 2021: 1-4. |
LIU Q. Intelligent methods for fault diagnosis of hydraulic system in marine steering gear[D]. Beijing: Beijing Jiaotong University, 2021: 1-4 (in Chinese). | |
90 | QI H T, ZHAO D A, LIU D, et al. Double redundancy electro-hydrostatic actuator fault diagnosis method based on progressive fault diagnosis method[J]. Actuators, 2022, 11(9): 264. |
91 | AHN J H, YANG O. A study on the implementation of intelligent diagnosis system for motor pump[J]. Journal of the Semiconductor & Display Technology, 2019, 18(4): 87-91 (in Korean). |
92 | KHAN K, SOHAIB M, RASHID A, et al. Recent trends and challenges in predictive maintenance of aircraft’s engine and hydraulic system[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43: 403. |
93 | JIN W B, GUO H, XU J Q. Design of high-speed wet-type permanent magnet synchronous motor considering oil frictional loss[C]∥2020 IEEE Energy Conversion Congress and Exposition. Piscataway: IEEE Press, 2020: 1371-1378. |
94 | CHURN P M, MAXWELL C J, SCHOFIELD N, et al. Electro-hydraulic actuation of primary flight control surfaces[C]∥IEE Colloquium on All Electric Aircraft (Digest No. 1998/260). London: Institution of Engineering and Technology, 1998: 3/1-3/5. |
95 | POWELL D J, ATALLAH K, JEWELL G. Thermal modeling of flooded rotor electrical machines for electro-hydrostatic actuators[C]∥2007 IEEE International Conference on Electric Machines and Drives. Piscataway: IEEE Press, 2007: 1632-1637. |
96 | 李磊. 高转速电机泵动力学特性研究[D]. 杭州: 浙江大学, 2019: 159-162. |
LI L. Research on the dynamic characteristics of high speed motor-pump unit[D]. Hangzhou: Zhejiang University, 2019: 159-162 (in Chinese). | |
97 | 李祝锋, 邵云滨, 付永领, 等. 轴向柱塞式电液泵的油隙损耗与机械效率[J]. 北京航空航天大学学报, 2014, 40(6): 769-774. |
LI Z F, SHAO Y B, FU Y L, et al. Oil gap loss and mechanical efficiency of axial piston electro-hydraulic pump[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 769-774 (in Chinese). | |
98 | 冀宏, 孙磊, 王峥嵘, 等. 液压电机泵中浸油电机的负载效应[J]. 兰州理工大学学报, 2009, 35(4): 52-56. |
JI H, SUN L, WANG Z R, et al. Load effect of electro-motor of hydraulic electro-motor pump[J]. Journal of Lanzhou University of Technology, 2009, 35(4): 52-56 (in Chinese). | |
99 | 冀宏, 李志峰, 王峥嵘, 等. 液压电机叶片泵样机的性能试验[J]. 农业机械学报, 2010, 41(11): 48-51, 56. |
JI H, LI Z F, WANG Z R, et al. Performance test of the prototype of electric motor pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 48-51, 56 (in Chinese). | |
100 | 祁琦, 冀宏. 基于Ansoft的液压电机叶片泵电机的仿真研究[J]. 机床与液压, 2010, 38(17): 102-105. |
QI Q, JI H. Smulation and analysis of special motor of the hydraulic motor vane pump based on Ansoft[J]. Machine Tool & Hydraulics, 2010, 38(17): 102-105 (in Chinese). | |
101 | 王峥嵘, 冀宏, 胡启辉, 等. 液压电机叶片泵样机的噪声测量及分析[J]. 液压与气动, 2010, 34(9): 63-65. |
WANG Z R, JI H, HU Q H, et al. Noise test and analysis on an prototype of electric motor pump[J]. Chinese Hydraulics & Pneumatics, 2010, 34(9): 63-65 (in Chinese). | |
102 | 汪翔羚. 液压电机泵中电机定子形状对电磁特性和温度场的影响[D]. 兰州: 兰州理工大学, 2012: 1-13. |
WANG X L. The influence of motor stator shape on electro-magnetic characteristics and temperature field in hydraulic motor pump[D]. Lanzhou: Lanzhou University of Technology, 2012: 1-13 (in Chinese). | |
103 | LEE W K, LI S L, HAN D, et al. A review of integrated motor drive and wide-bandgap power electronics for high-performance electro-hydrostatic actuators[J]. IEEE Transactions on Transportation Electrification, 2018, 4(3): 684-693. |
104 | CHACON R, IVANTYSYNOVA M. Thermal effects on the fluid film in the cylinder block/valve plate interface due to compression and expansion of the fluid[J]. International Journal of Fluid Power System, 2018, 11(3): 136-142. |
105 | XU H G, ZHANG J H, ZHAO S J, et al. Performance optimization for high speed axial piston pump considering cylinder block tilt[J]. Chinese Journal of Aeronautics, 2023, 36(9): 437-450. |
106 | CHACON R, IVANTYSYNOVA M. Virtual prototyping of axial piston machines: Numerical method and experimental validation[J]. Energies, 2019, 12(9): 1674. |
107 | 王克龙. 轴向柱塞泵柱塞副微运动及润滑油膜的特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 5-10. |
WANG K L. Micro-motion and lubrication characteristics of piston-cylinder interface in axial piston pump[D]. Harbin: Harbin Institute of Technology, 2019: 5-10 (in Chinese). | |
108 | LYU F, YE S G, ZHANG J H, et al. Theoretical and simulation investigations on flow ripple reduction of axial piston pumps using nonuniform distribution of pistons[J]. Journal of Dynamic Systems, Measurement, and Control, 2021, 143(4): 041008. |
109 | 吕飞, 徐兵, 张军辉. 转速对EHA泵柱塞副柱塞位姿及泄漏量影响仿真分析[J]. 机械工程学报, 2018, 54(20): 123-130. |
Lü F, XU B, ZHANG J H. Simulative analysis of piston posture and piston/cylinder interface leakage of EHA pumps by the influence of rotating speed[J]. Journal of Mechanical Engineering, 2018, 54(20): 123-130 (in Chinese). | |
110 | LYU F, ZHANG J H, SUN G M, et al. Research on wear prediction of piston/cylinder pair in axial piston pumps[J]. Wear, 2020, 456-457: 203338. |
111 | ZHAO J A, FU Y L, WANG M K, et al. Experimental research on tribological characteristics of TiAlN coated valve plate in electro-hydrostatic actuator pumps[J]. Tribology International, 2021, 155: 106782. |
112 | FU J, LYU D C, KANG J, et al. Tribological characteristics of hard-to-hard matching materials of cylinder block/valve plate interface in electro-hydrostatic actuator pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2024, 238(6): 2393-2406. |
113 | LI Y C, FU J, ZHAO J A, et al. Research on the experimental system for testing oil film stiffness of the cylinder block/valve plate interface of EHA piston pump[C]∥2022 Chinese Intelligent Systems Conference. Cham: Springer, 2022: 179-188. |
114 | 李少年, 包尚令, 杨攀, 等. 轴向柱塞泵配流盘摩擦副材料的磨损实验研究[J]. 液压气动与密封, 2021, 41(7): 1-3, 8. |
LI S N, BAO S L, YANG P, et al. Experimental study on friction pairs wear of axial piston pump port plate[J]. Hydraulics Pneumatics & Seals, 2021, 41(7): 1-3, 8 (in Chinese). | |
115 | 李玉龙, 何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与性能增强[J]. 清华大学学报(自然科学版), 2021, 61(12): 1405-1422. |
LI Y L, HE Y Y, LUO J B. Surface modifications and performance enhancements of key friction pairs in aviation hydraulic piston pumps[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12): 1405-1422 (in Chinese). | |
116 | COSTA H L, HUTCHINGS I M. Some innovative surface texturing techniques for tribological purposes[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229(4): 429-448. |
117 | GROPPER D, WANG L, HARVEY T J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings[J]. Tribology International, 2016, 94: 509-529. |
118 | MA X, WANG Q J, LU X Q, et al. Piston surface design to improve the lubrication performance of a swash plate pump[J]. Tribology International, 2019, 132: 275-285. |
119 | YE S G, TANG H S, REN Y, et al. Study on the load-carrying capacity of surface textured slipper bearing of axial piston pump[J]. Applied Mathematical Modelling, 2020, 77(1): 554-584. |
120 | PORTILLO R C. Cylinder block/valve plate interface performance investigation through the introduction of micro-surface shaping[D]. West Lafayette: Purdue University, 2014: 1-5. |
121 | CHEN W, HUANG X Y, MA J E, et al. Thermal analysis of a fluid immersed brushless DC motor for aerospace applications[J]. Applied Mechanics and Materials, 2013, 416-417: 1126-1131. |
122 | 曹克强, 李永林, 胡良谋, 等. 液压系统热特性建模方法与仿真技术的研究现状与展望[J]. 机床与液压, 2014, 42(15): 174-179, 193. |
CAO K Q, LI Y L, HU L M, et al. Current situation and trends on the study of thermal characteristics modeling and simulation of hydraulic system[J]. Machine Tool & Hydraulics, 2014, 42(15): 174-179, 193 (in Chinese). | |
123 | 白国长, 赵华强. 冷却流道结构对电机泵温升的影响研究[J]. 郑州大学学报(工学版), 2021, 42(4): 53-57. |
BAI G C, ZHAO H Q. Study on influence of cooling channel structure on temperature rise of motor pump[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(4): 53-57 (in Chinese). | |
124 | 张玉莹. 浸油式电机泵一体化热力学建模与结构优化[D]. 秦皇岛: 燕山大学, 2022: 27-38. |
ZHANG Y Y. Thermal-hydraulic modeling and structure optimization of oil-immersed motor pump[D]. Qinhuangdao: Yanshan University, 2022: 27-38 (in Chinese). | |
125 | 冀宏, 邢晖晖, 孙飞, 等. 基于流固耦合传热分析的液压电机泵温度场特征[J]. 液压与气动, 2023, 47(3): 1-8. |
JI H, XING H H, SUN F, et al. Temperature field characteristics of hydraulic motor pump based on fluid-structure coupling heat transfer analysis[J]. Chinese Hydraulics & Pneumatics, 2023, 47(3): 1-8 (in Chinese). | |
126 | SHORBAGY A, IVANTYSYN R, WEBER J. An experimental approach to simultaneously measure the temperature field and fluid film thickness in the cylinder block/valve plate gap of an axial piston pump[C]∥9th International Symposium on Turbulence Heat and Mass Transfer. Danbury: Begellhouse, 2018: 863-875. |
127 | SHEN Y L, MAZHAR A R, ZHANG P W, et al. Structure optimization of tree-shaped fins for improving the thermodynamic performance in latent heat storage[J]. International Journal of Thermal Sciences, 2023, 184: 108003. |
/
〈 |
|
〉 |