基于联邦图网络的转子系统故障诊断方法
收稿日期: 2024-04-24
修回日期: 2024-05-20
录用日期: 2024-06-03
网络出版日期: 2024-06-07
基金资助
国家自然科学基金(12172290);深圳市自然科学基金(JCYJ20220530161801003)
Fault diagnosis method of rotor system based on federated graph network
Received date: 2024-04-24
Revised date: 2024-05-20
Accepted date: 2024-06-03
Online published: 2024-06-07
Supported by
National Natural Science Foundation of China(12172290);Shenzhen Science and Technology Program(JCYJ20220530161801003)
转子系统运行环境恶劣、多源监测数据融合困难且易产生数据孤岛现象,对转子系统健康监测带来巨大挑战。本文提出了基于遗传进化构图的联邦图卷积神经网络(FGCN)转子系统故障诊断方法。首先,利用联邦学习和图神经网络,构建联邦图网络框架,通过在每个本地客户端上进行局部模型训练,并通过联邦加权平均算法聚合这些局部模型得到全局模型,这种数据不动、模型动的方式,不仅实现了数据的本地化处理,还确保了模型参数的安全与隐私;此外,为了解决多源传感器数据融合自适应差的问题,提出了遗传进化构图方法,该方法通过模拟生物进化过程中的自然选择和遗传变异机制,在训练过程中自动调整图结构节点之间的连接关系和权重;极大地提高了多源传感器构图的自适应性和灵活性,进而提升故障诊断的准确性。最后,通过在转子故障实验台数据集上进行验证,实验结果表明,所提出的方法能够更充分利用多传感器监测数据,在客户端包含故障种类数量不同的诊断场景中达到了95%以上的故障诊断准确率。
李晖 , 陈银超 , 孙绍山 , 梁兆鑫 , 毛刚 , 乔彬 , 李永波 . 基于联邦图网络的转子系统故障诊断方法[J]. 航空学报, 2024 , 45(17) : 530611 -530611 . DOI: 10.7527/S1000-6893.2024.30611
Considerable harsh operating environments of rotor systems, combined with the difficulty in fusing monitoring data from multiple sources and a tendency to form data islands, present substantial challenges to the health monitoring of rotor systems. This paper proposes a rotor system fault diagnosis method utilizing Federated Graph Convolutional neural Networks (FGCN) based on a genetic evolutionary composition. First, a federated migration learning framework, employing federated learning and graph neural networks, is established. The global model is derived by training local models on individual clients and aggregating them via a federated weighted average algorithm. This method facilitates data localization while securing the privacy and integrity of model parameters. Furthermore, to address the challenge of inadequate adaptive integration of multi-source sensor data, a genetic evolution composition method is introduced. This method dynamically adjusts the connectivity and weights among graph nodes during training, emulating the mechanisms of natural selection and genetic variation found in biological evolution. This approach significantly enhances the adaptability and flexibility of the multi-source sensor composition, thereby improving the accuracy of fault diagnosis. In conclusion, experimental validation on the rotor failure testbed dataset demonstrates that the proposed method effectively utilizes limited target domain data, achieving over 95% accuracy in fault diagnosis scenarios where the clients contain different number of faults classes.
1 | LIAO W L, YANG D C, WANG Y S, et al. Fault diagnosis of power transformers using graph convolutional network[J]. CSEE Journal of Power and Energy Systems, 2021, 7(2): 241-249. |
2 | ZHANG D C, STEWART E, ENTEZAMI M, et al. Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network[J]. Measurement, 2020, 156: 107585. |
3 | WANG T, LIU Z, LU G L, et al. Temporal-spatio graph based spectrum analysis for bearing fault detection and diagnosis[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2598-2607. |
4 | ZHOU K B, YANG C Y, LIU J, et al. Dynamic graph-based feature learning with few edges considering noisy samples for rotating machinery fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2022, 69(10): 10595-10604. |
5 | XU J M, KE H B, CHEN Z W, et al. Oversmoothing relief graph convolutional network-based fault diagnosis method with application to the rectifier of high-speed trains[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 771-779. |
6 | CHEN Z W, XU J M, PENG T, et al. Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9157-9169. |
7 | YANG C Y, ZHOU K B, LIU J. SuperGraph: Spatial-temporal graph-based feature extraction for rotating machinery diagnosis[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 4167-4176. |
8 | LI T F, ZHOU Z, LI S N, et al. The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study[J]. Mechanical Systems and Signal Processing, 2022, 168: 108653. |
9 | KONE?NY J, MCMAHAN H B, YU F X, et al. Federated learning: Strategies for improving communication efficiency[EB/OL]. 2016: arXiv: 1610.05492. |
10 | 邵海东, 肖一鸣, 闵志闪, 等. 区块链和边缘计算赋能的联邦学习故障诊断框架[J]. 机械工程学报,2023,59(21):283-292. |
SHAO H D, XIAO Y M, MIN Z S,et al. Blockchain and edge computing enabled federated learning fault diagnosis framework[J]. Journal of Mechanical Engineering,2023,59(21):283-292 (in Chinese). | |
11 | ZHANG W, LI X, MA H, et al. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision[J]. Knowledge-Based Systems, 2021, 213: 106679. |
12 | ZHANG W, LI X. Data privacy preserving federated transfer learning in machinery fault diagnostics using prior distributions[J]. Structural Health Monitoring, 2022, 21(4): 1329-1344. |
13 | ZHANG W, LI X. Federated transfer learning for intelligent fault diagnostics using deep adversarial networks with data privacy[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(1): 430-439. |
14 | SUN S L, HUANG H D, PENG T Y, et al. A data privacy protection diagnosis framework for multiple machines vibration signals based on a swarm learning algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3501309. |
15 | ZHANG W, WANG Z W, LI X. Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis[J]. Reliability Engineering & System Safety, 2023, 229: 108885. |
16 | CHEN J, TANG J H, LI W H. Industrial edge intelligence: Federated-meta learning framework for few-shot fault diagnosis[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6): 3561-3573. |
17 | DU N H, LONG N H, HA K N, et al. Trans-Lighter: A light-weight federated learning-based architecture for remaining useful lifetime prediction[J]. Computers in Industry, 2023, 148: 103888. |
18 | ANGLES R, GUTIERREZ C. Survey of graph database models[J]. ACM Computing Surveys, 2008, 40(1): 1-39. |
19 | ZUMSTEIN P. Comparison of spectral methods through the adjacency matrix and the Laplacian of a graph[D]. Zurich: ETH Zürich, 2005. |
20 | XIE Z L, CHEN J L, FENG Y, et al. Semi-supervised multi-scale attention-aware graph convolution network for intelligent fault diagnosis of machine under extremely-limited labeled samples[J]. Journal of Manufacturing Systems, 2022, 64: 561-577. |
21 | YANG C Y, LIU J, ZHOU K B, et al. A node-level PathGraph-based bearing remaining useful life prediction method[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3517610. |
22 | LI C Y, MO L F, YAN R Q. Rolling bearing fault diagnosis based on horizontal visibility graph and graph neural networks[C]∥ 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). Piscataway: IEEE Press, 2020: 275-279. |
23 | DYER R J, NASON J D. Population graphs: The graph theoretic shape of genetic structure[J]. Molecular Ecology, 2004, 13(7): 1713-1727. |
24 | 贾思祥, 孙丁一, 毛刚, 等. 基于对抗熵的转子系统跨工况故障诊断方法[J]. 机械工程学报, 2023, 59(15): 110-120. |
JIA S X, SUN D Y, MAO G, et al. Adversarial entropy based fault diagnosis method for rotor system across different working conditions[J]. Journal of Mechanical Engineering, 2023, 59(15): 110-120 (in Chinese). |
/
〈 |
|
〉 |