航天器的可重构性与自主重构方法
收稿日期: 2023-04-11
修回日期: 2023-05-05
录用日期: 2023-06-21
网络出版日期: 2023-07-07
基金资助
国家自然科学基金(U22B6001);中国科协青年人才托举工程(2021QNRC001);中国博士后科学基金(2022M713005)
Reconfigurability and autonomous reconfiguration methods of spacecraft
Received date: 2023-04-11
Revised date: 2023-05-05
Accepted date: 2023-06-21
Online published: 2023-07-07
Supported by
National Natural Science Foundation of China(U22B6001);Young Elite Scientists Sponsorship Program by CAST(2021QNRC001);China Postdoctoral Science Foundation(2022M713005)
面向火箭、导弹、卫星等多类航天器安全可靠自主运行的迫切需求,对航天器的可重构性与自主重构方法展开了深入研究,旨在提升航天器在故障下的系统重构能力。首先,考虑气动力矩、地磁力矩、重力梯度力矩、过程噪声等各类实际干扰因素影响,提出了一种受扰系统的可重构性评价方法,实现了重构能力的判定和量化。然后,提出了一种主被动结合的自主重构方法框架,平衡了重构方案的实施效果和实现难度;在设计具体的重构算法时,提出了一种正常模式与故障模式一体化设计方法,权衡了系统的标称性能和重构能力,降低了重构方案的过保守性。最后,通过一个仿真实例验证了所提出的方法的有效性。
关键词: 航天器; 可重构性; 自主重构; 主/被动结合; 正常模式与故障模式一体化设计
屠园园 , 王大轶 , 张香燕 , 李嘉兴 , 黄晓峰 . 航天器的可重构性与自主重构方法[J]. 航空学报, 2023 , 44(23) : 628855 -628855 . DOI: 10.7527/S1000-6893.2023.28855
In response to the urgent need for safe and reliable autonomous operation of multiple types of spacecraft, such as rockets, missiles, and satellites, in-depth research has been conducted on the reconfigurability and autonomous reconfiguration methods of spacecraft, aiming to improve the system reconfiguration capability of spacecraft under faults. Firstly, considering various practical disturbance factors such as aerodynamic torque, geomagnetic torque, gravity gradient torque, and process noise, a reconfigurability evaluation method for disturbed systems is proposed, which realizes the determination and quantification of reconfiguration capability. Then, a passive/active combined autonomous reconfiguration method is proposed, which balances the implementation effectiveness and difficulty of the reconfiguration scheme. When designing specific reconfiguration algorithms, an integrated design method of normal and fault modes is proposed, which balances the nominal performance and reconfigurability of the system and reduces the over-conservativeness of the reconfiguration scheme. Finally, the effectiveness of the proposed methods is verified through a simulation example.
1 | 王大轶, 刘成瑞, 刘文静,等. 航天器控制系统自主诊断重构技术: 系统可诊断性与可重构性的评价和设计[M]. 北京: 中国宇航出版社, 2019. |
WANG D Y, LIU C R, LIU W J,et al. Autonomous diagnosis and reconfiguration technology of spacecraft control system: Evaluation and design of system diagnosability and reconfiguration[M]. Beijing: China Astronautic Publishing House, 2019 (in Chinese). | |
2 | 姜斌, 张柯, 杨浩, 等. 卫星姿态控制系统容错控制综述[J]. 航空学报, 2021, 42(11): 524662. |
JIANG B, ZHANG K, YANG H, et al. Fault-tolerant control of satellite attitude control systems: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524662 (in Chinese). | |
3 | WU N E, ZHOU K M, SALOMON G. Control reconfigurability of linear time-invariant systems[J]. Automatica, 2000, 36(11): 1767-1771. |
4 | REN W J, YANG H, JIANG B. Fault recoverability analysis of nonlinear systems: A piecewise affine system approach[J]. International Journal of Control, Automation and Systems, 2017, 15(2): 547-556. |
5 | SHAKER H R. Control reconfigurability of bilinear systems[J]. Journal of Mechanical Science and Technology, 2013, 27(4): 1117-1123. |
6 | YANG H, JIANG B, STAROSWIECKI M, et al. Fault recoverability and fault tolerant control for a class of interconnected nonlinear systems[J]. Automatica, 2015, 54: 49-55. |
7 | STAROSWIECKI M. On reconfigurability with respect to actuator failures[J]. IFAC Proceedings Volumes, 2002, 35(1): 257-262. |
8 | HUANG C K, YANG H, REN W J, et al. Fault recoverability analysis of interconnected systems[J]. IET Control Theory & Applications, 2019, 13(4): 554-561. |
9 | REN W J, YANG H, JIANG B. Fault recoverability analysis of nonlinear systems: A piecewise affine system approach[J]. International Journal of Control, Automation and Systems, 2017, 15(2): 547-556. |
10 | WANG D Y, LIU C R. Reconfigurability analysis method for spacecraft autonomous control[J]. Mathematical Problems in Engineering, 2014, 2014: 724235. |
11 | YANG H, ZHANG C C, AN Z X, et al. Exponential small-gain theorem and fault tolerant safe control of interconnected nonlinear systems[J]. Automatica, 2020, 115: 108866. |
12 | ZHANG C C, YANG H, JIANG B. Fault estimation and accommodation of fractional-order nonlinear, switched, and interconnected systems[J]. IEEE Transactions on Cybernetics, 2022, 52(3): 1443-1453. |
13 | TU Y Y, WANG D Y, LI W B, et al. Optimisation of controller reconfiguration instant for spacecraft control systems with additive actuator faults[J]. International Journal of Systems Science, 2021, 52(14): 3076-3090. |
14 | HUANG J Z, WU N E. Fault-tolerant placement of phasor measurement units based on control reconfigurability[J]. Control Engineering Practice, 2013, 21(1): 1-11. |
15 | HUANG J Z, WU N E. Fault-tolerant sensor placement based on control reconfigurability[J]. IFAC Proceedings Volumes, 2011, 44(1): 14814-14819. |
16 | SANJUAN A, NEJJARI F, SARRATE R. Reconfigurability analysis of multirotor UAVs under actuator faults[C]∥ 2019 4th Conference on Control and Fault Tolerant Systems. Piscataway: IEEE Press, 2019: 26-31. |
17 | PENG Y, YANG H, JIANG B. Probabilistic fault recoverability analysis of flight control process[J]. Chinese Journal of Aeronautics, 2021, 34(2): 529-538. |
18 | MENG Q K, YANG H, JIANG B. Attitude control reconfigurability analysis of 4-CMGs pyramid configuration spacecraft[C]∥ 2019 12th Asian Control Conference. Piscataway: IEEE Press, 2019: 1478-1482. |
19 | YANG H, MENG Q K, JIANG B. Controllability of spacecraft attitude and its application in reconfigurability analysis[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(2): 189-196. |
20 | BRAKSMAYER M, MIRKIN L. Discrete-time H2 optimal control under intermittent and lossy communications[J]. Automatica, 2019, 103: 180-188. |
21 | TU Y Y, WANG D Y, DING S X, et al. A reconfiguration-based fault-tolerant control method for nonlinear uncertain systems[J]. IEEE Transactions on Automatic Control, 2022, 67(11): 6060-6067. |
22 | 吴敏, 桂卫华, 何勇. 现代鲁棒控制[M]. 2版. 长沙: 中南大学出版社, 2006. |
WU M, GUI W H, HE Y. Advanced robust control[M]. 2nd ed. Changsha: Central South University Press, 2006 (in Chinese). | |
23 | ZHOU K M, DOYLE J C, GLOVER K. Robust and optimal control[M]. Englewood Cliffs: Prentice Hall, 1996. |
24 | LIANG Y W, LIAW D C, LEE T C. Reliable control of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(4): 706-710. |
/
〈 |
|
〉 |