首届空天前沿大会优秀论文专栏

前飞状态可变弯度翼型/旋翼气动特性

  • 张夏阳 ,
  • 高陈诚 ,
  • 招启军 ,
  • 梁家辉
展开
  • 南京航空航天大学 直升机动力学全国重点实验室,南京 210016
.E-mail: zhaoqijun@nuaa.edu.cn

收稿日期: 2024-04-25

  修回日期: 2024-04-29

  录用日期: 2024-05-27

  网络出版日期: 2024-06-03

基金资助

国家自然科学基金(12102186);国家重点实验室基金(61422202201);中国科协青年人才托举工程(2022QNRC001);江苏高校优势学科建设工程资助项目

Aerodynamic characteristics of variable-camber airfoil/rotor in forward flight

  • Xiayang ZHANG ,
  • Chencheng GAO ,
  • Qijun ZHAO ,
  • Jiahui LIANG
Expand
  • National Key Laboratory of Helicopter Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2024-04-25

  Revised date: 2024-04-29

  Accepted date: 2024-05-27

  Online published: 2024-06-03

Supported by

National Natural Science Foundation of China(12102186);National Key Laboratory Foundation of China(61422202201);Young Elite Scientists Sponsorship Program by CAST(2022QNRC001);PAPD

摘要

智能材料技术的发展使得翼型/旋翼连续变弯度技术能得以实现。为研究前飞状态连续变弯度翼型/旋翼技术对动态失速条件下强非定常气动特性的影响机理,建立了基于运动嵌套网格方法和URANS方程的旋翼流场求解方法,并通过RBF网格变形方法实现翼型/旋翼变弯度后的贴体网格重构;通过前飞状态NACA0012翼型动态失速、SA349/2旋翼和SMART后缘小翼的非定常气动特性对比分析,验证了变形网格技术和数值求解方法的有效性;通过与传统刚性后缘小翼进行对比,揭示了连续变弯度技术对于提高翼型平均升阻比的原理;捕获了可变弯度翼型/旋翼对动态失速特性的复杂影响,获得了变弯度运动频率、幅值和初相位对翼型非定常气动特性的影响机理,以及三维旋转桨叶不同方位角和剖面位置的非定常气动载荷变化特性。结果表明:通过协调分配变弯度运动频率能够实现对旋翼气动载荷的有效控制;即使在动态失速状态下,变弯度幅值增量与翼型/旋翼非定常气动力增量呈现出近似线性的关系;变弯度初相位需与旋翼周期变距操纵初相位保持一致以抑制桨叶剖面气动力系数的发散。上述规律表明连续变弯度技术在旋翼配平或减振控制方面具有潜在的应用价值。

本文引用格式

张夏阳 , 高陈诚 , 招启军 , 梁家辉 . 前飞状态可变弯度翼型/旋翼气动特性[J]. 航空学报, 2024 , 45(24) : 630609 -630609 . DOI: 10.7527/S1000-6893.2024.30609

Abstract

The development of smart materials has made it possible to achieve continuous variable-camber function of airfoil/rotor. To study the influence mechanism of continuous variable-camber airfoil/rotor on the strong unsteady aerodynamic characteristics during dynamic stall, a rotor flowfield simulation method is established based on the moving-embedded mesh method and URANS equation, and the body-fitted mesh of variable-camber airfoil/rotor is reconstructed by the RBF mesh deformation method. The effectiveness of the mesh method and the numerical simulation method is verified by comparing the unsteady aerodynamic characteristics of the NACA0012 airfoil, the SA349/2 rotor and the SMART rotor with trailing edge winglet. A comparison with the traditional rigid trailing edge winglet reveal the principle and advantage of continuous variable-camber technology for improving the average lift-to-drag ratio of airfoil. The complex effect of variable-camber airfoil/rotor on dynamic stall characteristics is captured, and the influences of motion frequency, amplitude and initial phase of the variable-camber on the unsteady aerodynamic characteristics of the airfoil, as well as the unsteady aerodynamic load variation characteristics of the three-dimensional rotating blade with different azimuth angles and blade sections, are fully considered. The results demonstrate that the continuous variable-camber technology can effectively control the aerodynamic performance of the rotor through collaborative allocation of variable-camber frequencies. An approximate linear relationship between the variable-camber amplitude and the unsteady aerodynamic increment of the airfoil/rotor is observed even under the condition of dynamic stall. The initial phase of variable-camber should be consistent with the cyclic pitch control of rotor to suppress the divergence of sectional aerodynamic coefficient. The above rules indicate that the continuous variable-camber technology has great potential in rotor trim or vibration reduction.

参考文献

1 WANG Q, ZHAO Q J. Unsteady aerodynamic characteristics investigation of rotor airfoil under variational freestream velocity[J]. Aerospace Science and Technology201658: 82-91.
2 杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报201233(7): 1218-1226.
  YANG H, SONG W P, HAN Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica201233(7): 1218-1226 (in Chinese).
3 JING S M, ZHAO Q J, ZHAO G Q, et al. Multi-objective airfoil optimization under unsteady-freestream dynamic stall conditions[J]. Journal of Aircraft202360(2): 293-309.
4 韩少强, 宋文萍, 韩忠华, 等. 高速共轴刚性旋翼非定常流动高精度数值模拟[J]. 航空学报202445 (9): 529064.
  HAN S Q, SONG W P, HAN Z H, et al. High-accurate numerical simulation of unsteady flow over high-speed co-axial rigid rotors[J]. Acta Aeronautica et Astronautica Sinica202445 (9): 529064 (in Chinese).
5 HAN S Q, SONG W P, HAN Z H, et al. Hybrid inverse/optimization design method for rigid coaxial rotor airfoils considering reverse flow[J]. Aerospace Science and Technology201995: 105488.
6 GROHMANN B, MAUCHER C, J?NKER P. Actuation concepts for morphing helicopter rotor blades[C]?∥ ICAS-Secretariat-25th Congress of the International Council of the Aeronautical Sciences. 20064: 2199-2208.
7 招启军, 赵国庆, 王清. 先进旋翼设计空气动力学[M]. 北京: 科学出版社, 2020: 122-124.
  ZHAO Q J, ZHAO G Q, WANG Q. Advanced rotor design aerodynamics[M]. Beijing: Science Press, 2020: 122-124 (in Chinese).
8 KIEFER J, BRUNNER C E, HANSEN M O L, et al. Dynamic stall at high Reynolds numbers induced by ramp-type pitching motions[J]. Journal of Fluid Mechanics2022938: A10.
9 SHARMA A, VISBAL M. Numerical investigation of the effect of airfoil thickness on onset of dynamic stall[J]. Journal of Fluid Mechanics2019870: 870-900.
10 赵国庆, 刘绍辉, 李军府, 等. 旋翼非定常动态失速的三维效应分析[J]. 航空动力学报201833(6): 1484-1491.
  ZHAO G Q, LIU S H, LI J F, et al. Analysis on three-dimensional effects of rotor unsteady dynamic stall[J]. Journal of Aerospace Power201833(6): 1484-1491 (in Chinese).
11 SHUM J G, LEE S. Computational study of airfoil design parameters and sensitivity analysis for dynamic stall[J]. AIAA Journal202362(4): 1611-1617.
12 ZHOU J L, DONG L H, YANG W D. Experimental study on transfer functions of an active rotor under different flight conditions[J]. Chinese Journal of Aeronautics202235(8): 107-120.
13 RODRIGUEZ-EGUIA I, ERRASTI I, FERNANDEZ-GAMIZ U, et al. A parametric study of trailing edge flap implementation on three different airfoils through an artificial neuronal network[J]. Symmetry202012(5): 828.
14 马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报201738(3): 120312.
  MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica201738(3): 120312 (in Chinese).
15 王华龙, 张夏阳, 赵国庆, 等. 基于CFD/CSD耦合的TEF旋翼气弹特性高精度模拟[J]. 航空学报202445(18): 229904.
  WANG H L, ZHANG X Y, ZHAO G Q, et al. High-precision simulation of aeroelastic characteristics of TEF rotor based on CFD/CSD coupling[J]. Acta Aeronautica et Astronautica Sinica202445(18): 229904 (in Chinese).
16 HAO F Q, TANG T, GAO Y, et al. Continuous morphing trailing-edge wing concept based on multi-stable nanomaterial[J]. Chinese Journal of Aeronautics202134(7): 219-231.
17 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报201028(1): 46-53.
  CHEN Q, BAI P, YIN W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica201028(1): 46-53 (in Chinese).
18 WU Y, HU Y T, DAI Y T, et al. Effect of spanwise distributed camber morphing on dynamic stall characteristics of a finite-span wing[J]. Physics of Fluids202335(10): 105128.
19 KUMAR D, CESNIK C E S. Performance enhancement in dynamic stall condition using active camber deformation[J]. Journal of the American Helicopter Society201560(2): 1-12.
20 BLAZEK J. Computational fluid dynamics: Principles and applications[M]. Amsterdam: Elsevier, 2005: 16-18.
21 ZHAN L. Time spectral and space-time LU-SGS implicit methods for unsteady flow computations[D]. Irvine: University of California, 2015.
22 HAN S Q, SONG W P, HAN Z H. A novel high-order scheme for numerical simulation of wake flow over helicopter rotors in hover[J]. Chinese Journal of Aeronautics202235(5): 260-274.
23 MA L, ZHAO Q J, ZHANG K, et al. Aeroelastic analysis and structural parametric design of composite rotor blade[J]. Chinese Journal of Aeronautics202134(1): 336-349.
24 YU P, HU Z Y, XU G H, et al. Numerical simulation of tiltrotor flow field during shipboard take-off and landing based on CFD-CSD coupling[J]. Aerospace20229(5): 261.
25 MCALISTER K W, PUCCI S L, MCCROSKEYM W J, et al. An experimental study of dynamic stall on advanced airfoil sections: NASA-TM-84245[R]. Washington, D. C.: NASA, 1982.
26 HEFFERMAN R M, GAUBERT M. Structural and aerodynamic loads and performance measurements of an SA349/2 helicopter with an advanced geometry rotor: NASA-TM-88370[R]. Washington, D. C.: NASA, 1986.
27 LAU B H, OBRIECHT N, GASOW T, et al. Boeing-SMART rotor wind tunnel test data report for DARPA helicopter quieting program (HQP), phase 1B: NASA-TM-216404[R]. Washington, D. C.: NASA, 2010.
28 POTSDAM M, FULTON M V, DIMANLIG A. Multidisciplinary CFD/CSD analysis of the smart active flap rotor[C]?∥ American Helicopter Society 66th Annual Forum. 2010.
29 YUAN K A, FRIEDMANN P P. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips: NASA-CR-4665[R]. Washington, D. C.: NASA, 1995.
文章导航

/