论 文

联合等效斜距模型和自聚焦的地面动目标成像

  • 闫莉 ,
  • 张杰 ,
  • 王家东
展开
  • 1.西安电子科技大学 前沿交叉研究院,西安 710071
    2.西安电子科技大学 电子工程学院,西安 710071

收稿日期: 2024-04-22

  修回日期: 2024-04-22

  录用日期: 2024-05-09

  网络出版日期: 2024-06-03

基金资助

国家自然科学基金(62301391)

摘要

针对目标的平移运动导致合成孔径雷达(SAR)成像结果散焦的问题,提出一种对散焦图像后处理的重聚焦算法。首先,针对目标斜距泰勒展开系数随目标方位空变,导致方位移不变性不再成立的问题,提出了一种系数非空变的等效斜距模型,同时,此斜距模型减小了斜视成像下时域距离走动校正引起的方位空变相位误差。其次,针对多普勒模糊导致的频域补偿函数失配、不同SAR算法结果中残余相位形式不同的问题,采用频域截取和逆匹配方法,得到了多普勒中心校正后的等效回波数据。最后,通过最小熵自聚焦方法对残余相位进行估计和补偿,从而得到聚焦图像。仿真实验验证了所提算法的有效性。

本文引用格式

闫莉 , 张杰 , 王家东 . 联合等效斜距模型和自聚焦的地面动目标成像[J]. 航空学报, 2024 , 45(S1) : 730559 -730559 . DOI: 10.7527/S1000-6893.2024.30559

Abstract

A refocusing algorithm for post-processing defocused images is proposed to address the problem of defocusing in Synthetic Aperture Radar (SAR) imaging results caused by translational motion of the target. Firstly, in response to the problem that the spatial variation of the Taylor expansion coefficient of the target’s slant range spatially with the target’s azimuth will result in the loss of azimuth invariance, an equivalent slant range model with non spatially varying coefficients is proposed. This slant range model can weaken the phase error caused by time domain range walk correction in squint imaging. Secondly, to address the mismatch of frequency domain compensation function caused by Doppler ambiguity and the different residual phase forms in different SAR algorithm results, the frequency domain truncation and inverse matching methods are used to obtain the equivalent echo data after Doppler center correction. Finally, the residual phase is estimated and compensated using the minimum entropy autofocus method, resulting in a focused image. The effectiveness of the proposed algorithm is verified through simulation experiments.

参考文献

1 SONG X, LI Y C, ZHANG T H, et al. Focusing high-maneuverability bistatic forward-looking SAR using extended azimuth nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 5240814.
2 李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报202211( 6): 943- 973.
  LI Y C, WANG J D, ZHANG T H, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars202211( 6): 943- 973 (in Chinese).
3 ZHANG T H, LI Y C, WANG J, et al. A modified range model and extended omega-K algorithm for high-speed-high-squint SAR with curved trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing202361: 5204515.
4 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.
  BAO Z, XING M D, WANG T. Radar imaging technology[M]. Beijing: Publishing House of Electronics Industry, 2005 (in Chinese).
5 余涛. 改进高机动平台曲线轨迹SAR频域成像算法研究[D]. 西安: 西安电子科技大学, 2019.
  YU T. Research on improved frequency domain imaging algorithm of curved trajectory SAR for high maneuvering platform[D]. Xi’an: Xidian University, 2019 (in Chinese).
6 CAO R, WANG Y, ZHAO B, et al. Ship target imaging in airborne SAR system based on automatic image segmentation and ISAR technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202114: 1985- 2000.
7 LI Z Y, ZHANG X D, YANG Q, et al. Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing202160: 5215713.
8 XU X B, SU F L, GAO J J, et al. High-squint SAR imaging of maritime ship targets[J]. IEEE Transactions on Geoscience and Remote Sensing186460: 5200716.
9 LI R A, YAN H, WU C, et al. Low-flying moving target detection and imaging algorithm of spaceborne SAR based on two-dimensional velocity search[C]∥ 2022 14th International Conference on Signal Processing Systems (ICSPS). Piscataway: IEEE Press, 2022: 437- 443.
10 SAHAY P, JAIN A, RADHAKRISHNA P, et al. Parameter estimation and imaging of SAR ground moving target using AGFS[C]∥ 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). Piscataway: IEEE Press, 2021: 1- 6.
11 YANG J F, ZHANG Y H. Squint SAR ground moving target imaging and motion parameters estimation with keystone transform[C]∥ 2018 Asia-Pacific Microwave Conference (APMC). Piscataway: IEEE Press, 2018: 827- 829.
12 GU D D, YUE H, LU B T, et al. Velocity estimation for moving target refocusing in the long-time coherent integration SAR imaging[C]∥ 2018 China International SAR Symposium (CISS). Piscataway: IEEE Press, 2018: 1- 4.
13 熊世超, 倪嘉成, 张群, 等. 基于频谱旋转ωk算法的大斜视SAR地面动目标成像[J]. 系统工程与电子技术202244( 10): 3104- 3114.
  XIONG S C, NI J C, ZHANG Q, et al. High-squint mode SAR GMTIm based on ωk algorithm with spectrum rotation[J]. Systems Engineering and Electronics202244( 10): 3104- 3114 (in Chinese).
14 HAN J S, CAO Y H, YEO T S, et al. Robust clutter suppression and ground moving target imaging method for a multichannel SAR with high-squint angle mounted on hypersonic vehicle[J]. Remote Sensing202113( 11): 2051.
15 WANG Y, JIANG Y C. ISAR imaging for three-dimensional rotation targets based on adaptive Chirplet decomposition[J]. Multidimensional Systems and Signal Processing201021( 1): 59- 71.
16 LI J, LING H. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J]. IEE Proceedings-Radar, Sonar and Navigation2003150( 4): 284.
17 DU Y H, JIANG Y C, WANG Y, et al. ISAR imaging for low-earth-orbit target based on coherent integrated smoothed generalized cubic phase function[J]. IEEE Transactions on Geoscience and Remote Sensing202058( 2): 1205- 1220.
18 HUANG P H, XIA X G, ZHAN M Y, et al. ISAR imaging of a maneuvering target based on parameter estimation of multicomponent cubic phase signals[J]. IEEE Transactions on Geoscience and Remote Sensing202160: 5103918.
19 LI Y C, WANG J D, WANG Y, et al. Random-frequency-coded waveform optimization and signal coherent accumulation against compound deception jamming[J]. IEEE Transactions on Aerospace and Electronic Systems202359( 4): 4434- 4449.
20 ZHANG L, SHENG J L, DUAN J, et al. Translational motion compensation for ISAR imaging under low SNR by minimum entropy[J]. EURASIP Journal on Advances in Signal Processing20132013: 33.
21 CHEN V C, MARTORELLA M. Inverse synthetic aperture radar imaging: principles, algorithms and applications[M]. IET2014.
文章导航

/