论 文

时间约束多导弹协同制导律

  • 刘子超 ,
  • 王江 ,
  • 王鹏 ,
  • 林德福 ,
  • 何智川
展开
  • 北京理工大学 宇航学院,北京 100081
.E-mail: wjbest2003@163.com

收稿日期: 2024-04-25

  修回日期: 2024-04-26

  录用日期: 2024-05-23

  网络出版日期: 2024-05-31

基金资助

国家自然科学基金(61827901)

Time-constrained multi-missile cooperative guidance law

  • Zichao LIU ,
  • Jiang WANG ,
  • Peng WANG ,
  • Defu LIN ,
  • Zhichuan HE
Expand
  • School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
E-mail: wjbest2003@163.com

Received date: 2024-04-25

  Revised date: 2024-04-26

  Accepted date: 2024-05-23

  Online published: 2024-05-31

Supported by

Natural Science Foundation of China(61827901)

摘要

本文针对弱机动目标的时间协同打击问题,分别研究了基于匀速运动模型的隐式协同制导问题与基于速度时变模型的显式协同制导问题,以提升反坦克导弹对高价值目标的突防与毁伤能力。首先基于导弹匀速运动假设,采用预测校正的思想与最优误差动力学理论,在比例导引制导律的基础上加入时间约束偏置项,并基于最优误差动力学得到时间约束制导律,从而提出了对通信弱依赖性隐式时间协同制导律。针对速度时变导弹打击时间预测不准确影响隐式协同性能的问题,进一步提出了基于神经网络的显式时间协同制导方法。该方法采用预测校正的制导框架,根据比例导引制导律的特性采用迁移集成神经网络设计预测器以精确预测剩余飞行时间,并提出指定时间收敛的一致性动力学,使导弹在分布式通信架构下协调各自弹道长度,最终保证多枚导弹同时命中目标。仿真结果表明,所提出的隐式时间协同制导方法可保证多枚导弹同时精准命中目标,所设计的基于神经网络的显式时间协同制导方法可保证多枚导弹在变速条件下的协同打击。

本文引用格式

刘子超 , 王江 , 王鹏 , 林德福 , 何智川 . 时间约束多导弹协同制导律[J]. 航空学报, 2024 , 45(S1) : 730607 -730607 . DOI: 10.7527/S1000-6893.2024.30607

Abstract

This article addresses the problem of time-coordinated strike against weakly maneuvering targets. The implicit cooperative guidance problem based on the constant velocity motion model and the explicit cooperative guidance problem based on the velocity time-varying model are studied to enhance the breakthrough and destruction capabilities of anti-tank missiles against high-value targets. Firstly, based on the assumption of missile motion at a constant velocity, the idea of predictive correction and the optimal error dynamics theory are employed. Time-constrained bias terms are added to the proportional navigation guidance law, and a time-constrained guidance law is derived based on optimal error dynamics. An implicit time-coordinated guidance law scenarios depending weakly on communication is then proposed. To address the issue that inaccurate time prediction affects the performance of implicit cooperation caused by variable speed missile strikes, a neural network-based explicit time-coordinated guidance method is further proposed. This method adopts the predictive correction guidance framework, and designs the predictor by using transfer learning integrated neural networks according to the characteristics of proportional navigation guidance law to accurately predict the remaining flight time. Consistency dynamics with specified time convergence is proposed to coordinate the lengths of missile trajectories in the distributed communication architecture, ensuring that multiple missiles simultaneously hit the target. Simulation results show that the proposed implicit time-coordinated guidance method can ensure that multiple missiles simultaneously hit the target accurately, and the neural network-based explicit time-coordinated guidance method proposed can ensure coordinated strikes against multiple missiles under variable speed conditions.

参考文献

1 王笑梦, 杨吾帆. “轻矛” 与“坚盾” 的较量[N]. 解放军报, 2022-05-20(9).
  WANG X M, YANG W F. “Light spear” versus “strong shield”[N]. People’s Liberation Army Daily, 2022-05-20(9) (in Chinese).
2 王岐朋, 王韩, 李嘉诚. 俄乌冲突中的“流量” 武器及战术[J]. 轻兵器2022(6): 44-46.
  WANG Q P, WANG H, LI J C. “Flow” weapons and tactics in the conflict between Russia and Ukraine[J]. Small Arms2022(6): 44-46 (in Chinese).
3 程刚. “陆战王者” 的克星: 反坦克导弹[J]. 军事文摘2021(18): 16-19.
  CHENG G. Anti-tank missile: the Nemesis of “king of land warfare”[J]. Military Digest2021(18): 16-19 (in Chinese).
4 玉琮. 美国陆军新一代重型远程反坦克导弹选型[J]. 坦克装甲车辆2021(17): 47-53.
  YU C. Selection of new generation heavy-duty long-range anti-tank missile of US army[J]. Tank & Armoured Vehicle2021(17): 47-53 (in Chinese).
5 赵曙光, 孙娟芬, 杜佳原, 等. 反坦克导弹软件系统指标体系研究[J]. 航空兵器202128(6): 104-110.
  ZHAO S G, SUN J F, DU J Y, et al. Research on software system technical index of the anti-tank guided missile[J]. Aero Weaponry202128(6): 104-110 (in Chinese).
6 姜增良, 原树兴, 邵云峰, 等. 直瞄反坦克导弹火力转移射击问题研究[J]. 火力与指挥控制202146(10): 160-163.
  JIANG Z L, YUAN S X, SHAO Y F, et al. Research on fire shift shooting problem of direct-fire anti-tank missile[J]. Fire Control & Command Control202146(10): 160-163 (in Chinese).
7 JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology200614(2): 260-266.
8 KIM T H, LEE C H, TAHK M J, et al. Biased PNG law for impact-time control[J]. Transactions of the Japan Society for Aeronautical and Space Sciences201356(4): 205-214.
9 JEON I S, LEE J I, TAHK M J. Impact-time-control guidance with generalized proportional navigation based on nonlinear formulation[J]. Journal of Guidance, Control, and Dynamics201639(8): 1885-1890.
10 WANG Y J, DONG S, OU L L, et al. Cooperative control of multi-missile systems[J]. IET Control Theory & Applications20159(3): 441-446.
11 LEE S, CHO N, KIM Y. Impact-time-control guidance strategy with a composite structure considering the seeker’s field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics202043(8): 1566-1574.
12 JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics201033(1): 275-280.
13 LI K, WANG J N, LEE C H, et al. Distributed cooperative guidance for multivehicle simultaneous arrival without numerical singularities[J]. Journal of Guidance, Control, and Dynamics202043(7): 1365-1373.
14 阮聪, 温求遒, 孙国鑫. 考虑速度时变的多约束攻击时间控制制导律[J]. 战术导弹技术2020(3): 59-65.
  RUAN C, WEN Q Q, SUN G X. Multi-constraint impact time control guidance law under time-varying velocity[J]. Tactical Missile Technology2020(3): 59-65 (in Chinese).
15 DONG W, WANG C Y, WANG J N, et al. Varying-gain proportional navigation guidance for precise impact time control[J]. Journal of Guidance, Control, and Dynamics202246(3): 535-552.
16 GUO Y H, LI X, ZHANG H J, et al. Data-driven method for impact time control based on proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics202043(5): 955-966.
17 SUN G X, WEN Q Q, XU Z Q, et al. Impact time control using biased proportional navigation for missiles with varying velocity[J]. Chinese Journal of Aeronautics202033(3): 956-964.
18 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报201839(5): 321958.
  FANG K, ZHANG Q Z, NI K, et al. Time-coordinated reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica201839(5): 321958 (in Chinese).
19 LIU Z C, WANG J, HE S M, et al. Learning prediction-correction guidance for impact time control[J]. Aerospace Science and Technology2021119: 107187.
20 陈中原, 韦文书, 陈万春. 基于强化学习的多发导弹协同攻击智能制导律[J]. 兵工学报202142(8): 1638-1647.
  CHEN Z Y, WEI W S, CHEN W C. Reinforcement learning-based intelligent guidance law for cooperative attack of multiple missiles[J]. Acta Armamentarii202142(8): 1638-1647 (in Chinese).
21 YUCELEN T, KAN Z, PASILIAO E. Finite-time cooperative engagement[J]. IEEE Transactions on Automatic Control201964(8): 3521-3526.
22 HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics201841(7): 1624-1633.
23 WANG C Y, DONG W, WANG J N, et al. Guidance law design with fixed-time convergent error dynamics[J]. Journal of Guidance, Control, and Dynamics202144(7): 1389-1398.
24 YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[J]. Advances in Neural Information Processing Systems2014, 4(January): 3320-3328.
文章导航

/