共轴高速直升机反流区翼型设计及减阻机理
收稿日期: 2023-12-11
修回日期: 2024-01-07
录用日期: 2024-03-05
网络出版日期: 2024-03-13
基金资助
共用技术项目(50906010501)
Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism
Received date: 2023-12-11
Revised date: 2024-01-07
Accepted date: 2024-03-05
Online published: 2024-03-13
Supported by
Shared Technology Project(50906010501)
王雪鹤 , 柴春硕 , 邢世龙 , 樊枫 , 黄水林 . 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024 , 45(9) : 529960 -529960 . DOI: 10.7527/S1000-6893.2023.29960
Higher speed is the development tendency of helicopters in the future. Considering the wide region reverse flow of coaxial high-speed helicopters, a design of the airfoil in reverse flow region is proposed. Firstly, the flow characteristics surrounding the blunt trailing edge airfoil and the drag reduction mechanism deployed in the root of the rotor in high-speed forward flight are analyzed. Then, a blunt trailing edge airfoil characterized by large radius in the leading edge and smooth in the middle and rear parts of the suction surface is developed, in consideration of the reverse flow environment of the rotor. Compared with the standard elliptic airfoil, the modified airfoil improves the flow separation in both reverse flow and forward flow, with the drag coefficient decreasing more than 10% atMach number 0.1 in the reverse flow. Based on the modified airfoil, airfoil hybrid inverse design and design optimization are carried out considering the flow characteristics in the suction surface.Results indicate that the optimized airfoil maintains low drag coefficient in the reverse flow, and the lift-drag characteristic is promoted in the forward flow observably.
Key words: coaxial; high-speed helicopter; airfoil design; drag reduction; flow separation
1 | 吴希明, 牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报, 2021, 39(3): 1-10. |
WU X M, MU X W. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica, 2021, 39(3): 1-10 (in Chinese). | |
2 | 李春华, 樊枫, 徐明. 共轴刚性旋翼构型高速直升机发展研究[J]. 航空科学技术, 2021, 32(1): 47-52. |
LI C H, FAN F, XU M. The development overview of coaxial rigid rotor helicopter[J]. Aeronautical Science & Technology, 2021, 32(1): 47-52 (in Chinese). | |
3 | CHENEY M C, Jr. The ABC helicopter: AIAA-1969-0217[R]. Reston: AIAA, 1969. |
4 | BLACKWELL R, MILLOTT T. Dynamics design characteristics of Sikorsky X2 technology demonstrator aircraft[C]∥ Proceedings of 64th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society International, Inc., 2008: 886-898. |
5 | BAGAI A. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]∥ Proceedings of 64th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society International, Inc., 2008: 29-44. |
6 | LIND A H, LEFEBVRE J N, JONES A R. Experimental investigation of reverse flow over sharp and blunt trailing edge airfoils: AIAA-2013-3036[R]. Reston: AIAA, 2013. |
7 | LIND A H, LEFEBVRE J N, JONES A R. Time-averaged aerodynamics of sharp and blunt trailing-edge static airfoils in reverse flow[J]. AIAA Journal, 2014, 52(12): 2751-2764. |
8 | LIND A H, JONES A R. Vortex shedding from airfoils in reverse flow[J]. AIAA Journal, 2015, 53(9): 2621-2633. |
9 | LIND A H, SMITH L R, MILLUZZO J I, et al. Reynolds number effects on rotor blade sections in reverse flow[J]. Journal of Aircraft, 2016, 53(5): 1248-1260. |
10 | 张威, 胡偶, 王菲, 等. 基于X2TD高速直升机的前行桨叶概念旋翼翼型指标设计方法[J]. 空气动力学学报, 2022, 40(6): 73-82. |
ZHANG W, HU O, WANG F, et al. An indicator design method of advancing blade concept rotor airfoil based on X2TD aircraft[J]. Acta Aerodynamica Sinica, 2022, 40(6): 73-82 (in Chinese). | |
11 | 曾伟, 袁明川, 樊枫, 等. 直升机旋翼翼型需求分析及技术发展展望[J]. 空气动力学学报, 2021, 39(6): 61-69. |
ZENG W, YUAN M C, FAN F, et al. Requirement analyses and technical prospects of helicopter rotor airfoils[J]. Acta Aerodynamica Sinica, 2021, 39(6): 61-69 (in Chinese). | |
12 | 赵佳祥, 宋文萍, 韩忠华, 等. 应用于高速直升机旋翼反流区的类椭圆翼型: CN109229364B[P]. 2019-06-11. |
ZHAO J X, SONG W P, HAN Z H, et al. Quasi-elliptical airfoil for high-speed helicopter rotor reflux region: CN109229364B[P]. 2019-06-11 (in Chinese). | |
13 | 韩少强, 宋文萍, 韩忠华, 等. 用于高速直升机旋翼桨根的非对称双钝头翼型及设计方法: CN111717381B[P]. 2021-10-08. |
HAN S Q, SONG W P, HAN Z H, et al. Asymmetric double-blunt-end airfoil for rotor root of high-speed helicopter and design method: CN111717381B[P]. 2021-10-08 (in Chinese). | |
14 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
15 | MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—Part I: Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422. |
16 | LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables—Part II: Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3): 423-434. |
17 | KWON K, PARK S O. Aerodynamic characteristics of an elliptic airfoil at low Reynolds number[J]. Journal of Aircraft, 2005, 42(6): 1642-1644. |
18 | HUNTER D H, THOMAS J, BEATTY R D, et al. Dual rotor, rotary wing aircraft: US20170291699A1 [P]. 2017-10-12. |
19 | 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12): 122219. |
CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122219 (in Chinese). | |
20 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
21 | KULFAN B M. A universal parametric geometry representation method - “CST” : AIAA-2007-0062[R]. Reston: AIAA, 2007. |
22 | 卜月鹏, 宋文萍, 韩忠华, 等. 基于CST参数化方法的翼型气动优化设计[J]. 西北工业大学学报, 2013, 31(5): 829-836. |
BU Y P, SONG W P, HAN Z H, et al. Aerodynamic optimization design of airfoil based on CST parameterization method[J]. Journal of Northwestern Polytechnical University, 2013, 31(5): 829-836 (in Chinese). |
/
〈 |
|
〉 |