论文

复合式高速无人直升机飞行动力学建模与控制策略设计

  • 聂博文 ,
  • 王亮权 ,
  • 黄志银 ,
  • 何龙 ,
  • 杨仕鹏 ,
  • 颜鸿涛 ,
  • 章贵川
展开
  • 1.空天飞行空气动力科学与技术全国重点实验室,绵阳 621000
    2.中国空气动力研究与发展中心 低速空气动力研究所,绵阳 621000
    3.北京航空航天大学 航空科学与工程学院,北京 100191
    4.中国空气动力研究与发展中心 空天技术研究所,绵阳 621000
.E-mail: zgc29@163.com

收稿日期: 2023-11-08

  修回日期: 2023-11-20

  录用日期: 2024-02-27

  网络出版日期: 2024-03-13

基金资助

省部级项目

Flight dynamics modeling and control scheme design of compound high-speed unmanned helicopters

  • Bowen NIE ,
  • Liangquan WANG ,
  • Zhiyin HUANG ,
  • Long HE ,
  • Shipeng YANG ,
  • Hongtao YAN ,
  • Guichuan ZHANG
Expand
  • 1.State Key Laboratory of Aerodynamics,Mianyang 621000,China
    2.Low Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang  621000,China
    3.School of Aeronautic Science and Engineering,Beihang University,Beijing  100191,China
    4.Aerospace Technology Institute,China Aerodynamics Research and Development Center,Mianyang  621000,China
E-mail: zgc29@163.com

Received date: 2023-11-08

  Revised date: 2023-11-20

  Accepted date: 2024-02-27

  Online published: 2024-03-13

Supported by

Provincial and Ministerial Project

摘要

复合式高速无人直升机主要具有旋翼、机翼、螺旋桨、机身和平/垂尾等气动部件。各个部件之间的气动干扰复杂且会随前飞速度强烈、快速地变化,必须根据前飞速度修正飞行动力学模型参数,以获得较高的模型置信度;同时,必须根据前飞速度调整飞行控制策略,动态实现整个速度包线稳定可控飞行。为此,建立了复合式高速无人直升机飞行动力学机理模型,利用全机组合风洞配平试验数据进行了模型修正,有效提高了数学模型置信度;在配平点处,将非线性动力学模型线性化,获得了开环本体动力学特性随前飞速度的演化规律,并评估了控制增稳系统对闭环操稳性能的改善效果;在经典控制架构基础上,针对复合式高速无人直升机的升力、推力和偏航复合特性,设计了前馈补偿、回路加权和控制分配策略,并开展了仿真和试飞验证。研究结果表明:所建立的非线性动力学模型具有较高置信度,数学模型配平结果与风洞试验配平试验结果一致性较好;高/低阶线性模型的特征根分布规律基本一致,操纵响应历程与非线性动力学模型吻合较好;速度包线范围内升力、推力、航向复合飞行控制策略的有效性通过了飞行仿真检验;成功开展了国内首款300 kg级复合式高速无人直升机原理样机试飞,验证了悬停和小速度状态下的飞行控制策略有效性。

本文引用格式

聂博文 , 王亮权 , 黄志银 , 何龙 , 杨仕鹏 , 颜鸿涛 , 章贵川 . 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024 , 45(9) : 529848 -529848 . DOI: 10.7527/S1000-6893.2024.29848

Abstract

The compound high-speed unmanned helicopter consists mainly of the aerodynamic components such as rotor, wing, propeller, fuselage, and horizontal & vertical tails. Aerodynamic interferences between components can be complex and vary rapidly with the forward flight speed. To achieve a high level of model confidence, it is necessary to correct the flight dynamics model parameters according to the forward flight speed. Besides, the flight control scheme must be adjusted accordingly to achieve stable and controllable flight throughout the entire speed envelope. A model for the flight dynamics of the compound high-speed unmanned helicopter is presented. The model is corrected based on wind tunnel trimming tests to enhance the confidence of the mathematical model. At the trimming point, the non-linear dynamics model is linearized to obtain the evolution of the open-loop dynamics with the forward flight speed. The effect of the control augmentation system on the closed-loop steering stability performance is also evaluated. Based on the classical control approach, a set of practical feed-forward compensation, loop weighting, and control allocation schemes are designed considering the lift, thrust, and yaw characteristics of the compound high-speed unmanned helicopter. Simulation and test flight verification are carried out to confirm the effectiveness of these schemes. The results show that the proposed nonlinear dynamic model has high confidence, and the consistency between the trim results of the mathematical model and wind tunnel tests is good. The distribution of eigenvalues of the high/low-order linear models is basically consistent and the maneuver response characteristics are in good agreement with the nonlinear dynamic model. The flight simulation preliminarily validates the effectiveness of the compound scheme for lift, thrust, and yaw. The successful flight test of the first 300 kg prototype in China validates the compound flight control scheme in hover and low-speed flight.

参考文献

1 RAND O, KHROMOV V. Compound helicopter: Insight and optimization[J]. Journal of the American Helicopter Society201560(1): 1-12.
2 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报201547(2): 173-179.
  WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics201547(2): 173-179 (in Chinese).
3 黄明其, 徐栋霞, 何龙, 等. 常规旋翼构型复合式高速直升机发展概况及关键技术[J]. 航空动力学报202136(6): 1156-1168.
  HUANG M Q, XU D X, HE L, et al. Development overview and key technologies of high speed hybrid helicopter with single main rotor[J]. Journal of Aerospace Power202136(6): 1156-1168 (in Chinese).
4 YEO H. Design and aeromechanics investigation of compound helicopters[J]. Aerospace Science and Technology201988: 158-173.
5 THIEMEIER J, ?HRLE C, FREY F, et al. Aerodynamics and flight mechanics analysis of Airbus Helicopters’ compound helicopter RACER in hover under crosswind conditions[J]. CEAS Aeronautical Journal202011(1): 49-66.
6 ?HRLE C, FREY F, THIEMEIER J, et al. Coupled and trimmed aerodynamic and aeroacoustic simulations for Airbus Helicopters’ compound helicopter RACER[J]. Journal of the American Helicopter Society201964(3): 032003.
7 FAUST J A, JUNG Y S, BAEDER J, et al. Interactional aerodynamic analysis of an asymmetric lift-offset compound helicopter in forward flight[J]. Journal of the American Helicopter Society202166(3): 032011.
8 YANG K L, HAN D, SHI Q P. Study on the lift and propulsive force shares to improve the flight performance of a compound helicopter [J]. Chinese Journal of Aeronautics202235(1): 365-375.
9 STOKKERMANS T, VELDHUIS L, SOEMARWOTO B, et al. Breakdown of aerodynamic interactions for the lateral rotors on a compound helicopter[J]. Aerospace Science and Technology2020101: 105845.
10 FREY F, THIEMEIER J, ?HRLE C, et al. Aerodynamic interactions on Airbus Helicopters’ compound helicopter RACER in hover[J]. Journal of the American Helicopter Society202267(1): 012007.
11 WANG M S, WANG Y Y, CAO Y H, et al. Numerical simulation of aerodynamic interaction effects in coaxial compound helicopters[J]. Fluid Dynamics & Materials Processing202319(5): 1301-1315.
12 FERGUSON K, THOMSON D. Flight dynamics investigation of compound helicopter configurations[J]. Journal of Aircraft201552(1): 156-167.
13 FERGUSON K, THOMSON D. Examining the stability derivatives of a compound helicopter[J]. The Aeronautical Journal2017121(1235): 1-20.
14 YU Z M, KONG W H, CHEN R L. Research on trim control of compound high speed helicopter[J]. Transactions of Nanjing University of Aeronautics and Astronautics201936(3): 449-458.
15 CAO Y H, WANG M S, LI G Z. Flight dynamics modeling, trim, stability, and controllability of coaxial compound helicopters[J]. Journal of Aerospace Engineering202134(6): 0001342.
16 ZHAO Y Q, YUAN Y, CHEN R L. Influence of differential longitudinal cyclic pitch on flight dynamics of coaxial compound helicopter[J]. Chinese Journal of Aeronautics202336(9): 207-220.
17 YUAN Y, THOMSON D, CHEN R L, et al. Heading control strategy assessment for coaxial compound helicopters[J]. Chinese Journal of Aeronautics201932(9): 2037-2046.
18 ZHENG F Y, XIONG B W, ZHANG J Y, et al. Improved neural network adaptive control for compound helicopter with uncertain cross-coupling in multimodal maneuver[J]. Nonlinear Dynamics2022108(4): 3505-3528.
19 WU M L W, CHEN M. Nonlinear modeling and flight validation of a small-scale compound helicopter[J]. Applied Sciences20199(6): 1087.
20 REDDINGER J P, GANDHI F. Physics-based trim optimization of an articulated slowed-rotor compound helicopter in high-speed flight[J]. Journal of Aircraft201552(6): 1756-1766.
21 REDDINGER J P, GANDHI F, KANG H. Using control redundancy for power and vibration reduction on a compound helicopter at high speeds[J]. Journal of the American Helicopter Society201863(3): 032009.
22 DATTA A, YEO H, NORMAN T R. Experimental investigation and fundamental understanding of a full-scale slowed rotor at high advance ratios[J]. Journal of the American Helicopter Society201358(2): 022004.
23 SEKULA M K, GANDHI F. Effects of auxiliary lift and propulsion on helicopter vibration reduction and trim[J]. Journal of Aircraft200441(3): 645-656.
24 GANDHI F, SEKULA M K. Helicopter vibration reduction using fixed-system auxiliary moments[J]. AIAA Journal200442(3): 501-512.
25 THORSEN A T, HORN J F, OZDEMIR G T. Use of redundant controls to enhance transient response and handling qualities of a compound rotorcraft [C]∥70th American Helicopter Society International Annual Forum 2014. Washington, D.C.: American Helicopter Society International, Inc., 2014.
26 OZDEMIR G T, HORN J F, THORSEN A T. In-flight multi-variable optimization of redundant controls on a compound rotorcraft: AIAA-2013-5165[R]. Reston: AIAA, 2013.
27 OZDEMIR G T, HORN J F. Simulation analysis of a flight control law with in-flight performance optimization[C]∥68th American Helicopter Society International Annual Forum 2012. Washington, D.C.: American Helicopter Society International, Inc., 2012.
28 高子义. 复合式高速直升机飞行动力学建模与控制策略研究[D]. 南京: 南京航空航天大学, 2021.
  GAO Z Y. Research on flight dynamics model and control strategy of compound high-speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
29 曹燕. 复合式高速直升机飞行动力学建模与控制技术研究[D]. 南京: 南京航空航天大学, 2018.
  CAO Y. Research on flight dynamics modeling and control technology for compound high-speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
30 杨洋. 复合式高速无人直升机飞行力学建模及操纵策略研究[D]. 南京: 南京航空航天大学, 2021.
  YANG Y. Research on flight dynamics and manipulation strategy of compound high speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
31 邓柏海, 徐锦法. 复合式无人直升机姿态自抗扰控制[J]. 北京航空航天大学学报202349(11): 3100-3107.
  DENG B H, XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics202349(11): 3100-3107 (in Chinese).
32 曹宇燕, 金鑫, 彭永涛, 等. 基于最优分配的复合式高速无人直升机纵向控制设计与验证[J]. 航空科学技术202334(11): 75-80.
  CAO Y Y, JIN X, PENG Y T, et al. Longitudinal control design and verification of compound high speed unmanned helicopter based on optimal allocation[J]. Aeronautical Science & Technology202334(11): 75-80 (in Chinese).
33 TALBOT P D, TINLING B E, DECKER W A, et al. A mathematical model of a single main rotor helicopter for piloted simulation: NASA-TM-84281[R]. Washington, D.C.: NASA, 1982.
34 陈仁良, 李攀, 吴伟, 等. 直升机飞行动力学数学建模问题[J]. 航空学报201738(7): 520915.
  CHEN R L, LI P, WU W, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica201738(7): 520915 (in Chinese).
35 CHEN R T N. Effects of primary rotor parameters on flapping dynamics: NASA-TP-1431[R]. Washington, D.C.: NASA, 1980.
36 PITT D M, PETERS D A. Theoretical prediction of dynamic-inflow derivatives[J]. Vertica19815(1): 21-34.
37 CHEN R T N. A simplified rotor system mathematical model for piloted flight dynamics simulation: NASA-TM-78575[R]. Washington, D.C.: NASA, 1979.
38 张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与试验[J]. 航空学报201738(3): 120196.
  ZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica201738(3): 120196 (in Chinese).
39 FERGUSON S W. Development and validation of a simulation for a generic tilt-rotor aircraft: NASA-CR-166537[R]. Washington, D.C.: NASA, 1989.
40 吴伟. 直升机飞行动力学模型辨识与机动飞行研究[D]. 南京: 南京航空航天大学, 2010.
  WU W. Identification of helicopter flight dynamics model and investigation on maneuver flight[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese).
文章导航

/