高速直升机关键技术与发展
收稿日期: 2023-05-31
修回日期: 2023-06-19
录用日期: 2023-09-11
网络出版日期: 2023-10-11
Key technologies and development for high-speed helicopters
Received date: 2023-05-31
Revised date: 2023-06-19
Accepted date: 2023-09-11
Online published: 2023-10-11
常规直升机由于构型影响,限制了其飞行速度、航程等主要性能指标,高速化已经成为未来直升机发展的重要趋势之一,欧美等国已争先投入大量的资源研发高速直升机,且取得了阶段性的突破。本文首先分析了限制常规直升机速度的本质因素以及可实现速度提升的不同构型型式;然后重点针对4种具有较大发展潜力的高速构型:共轴刚性旋翼高速直升机、倾转旋翼飞行器、双推力复合式高速直升机、多桨倾转旋翼电驱动高速直升机进行分析,系统梳理了不同类别高速直升机研制过程中因构型差异衍生出的特有关键技术,并对各项关键技术展开技术途径分析,指出其中的难点与发展方向。最后,给出了一些高速直升机的发展思路。
邓景辉 . 高速直升机关键技术与发展[J]. 航空学报, 2024 , 45(9) : 529085 -529085 . DOI: 10.7527/S1000-6893.2023.29085
The performance criteria, such as flight speed and voyage, are restricted due to the configuration of conventional helicopter. High speed is one of the important trends in the development of helicopter. Euramerican countries have already invested massive resources in developing high-speed helicopter and obtained phased breakthroughs. In this paper, the essential reasons for the restriction of conventional helicopter flight speed and some different configurations which can improve flight speed are analyzed firstly. Then, detailed analysis is made focusing on the four high-speed configurations with great development potential, i.e., coaxial-rigid-rotor high-speed helicopter, tilt rotor aircraft, dual thrust compound high-speed helicopter and multi-propeller tilt-rotor high-speed electric-driven helicopter. The special key technologies during the development of different high-speed helicopter, due to the differences in configuration, are analyzed systematically. Also, the technical approaches of these different key technologies are investigated. The difficulties and development direction among them are pointed out as well. Finally, some development strategies of the high-speed helicopter are presented.
1 | 邓景辉. 直升机技术发展与展望[J]. 航空科学技术, 2021, 32(1): 10-16. |
DENG J H. Development and prospect of helicopter technology[J]. Aeronautical Science & Technology, 2021, 32(1): 10-16 (in Chinese). | |
2 | BENTLEY C E, SISSON M L. Joint future vertical lift (FVL) initiative[C]∥The AHS International 71th Annual Forum & Technology Display. 2015:1-10. |
3 | WILSON P, BELL, EHINGER R, et al. Bell V-280 valor: JMR TD flight test update-year 2[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-8. |
4 | BOWLES P O, MATALANIS C, BATTISTI M, et al. Full-configuration CFD analysis of the S-97 RAIDER[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-12. |
5 | LORBER P, BOWLES P, FOX E. Wind tunnel testing for the SB>1 defiant joint multi-role technology demonstrator[C]∥The AHS International 73rd Annual Forum & Technology Display. 2017: 1-18. |
6 | EHINGER R, MC M, WILSON P. Bell V-280 valor: A flight test update[C]∥The AHS International 74th Annual Forum & Technology Display. 2018:1-13. |
7 | KAMINSKI P. Technology and innovation enablers for superiority in 2030: ADA608507[R]. Washington, D.C.: Defense Science Board, 2013. |
8 | BLACHA M, FINK A, EGLIN P, et al. “Clean Sky 2”:Exploring new rotorcraft high speed configurations[C]∥The 43rd European Rotorcraft Forum. Milan: ERF, 2017:1-12. |
9 | BLACHA M, HELICOPTERS A, GARCIA-RIOS A, et al. The challenges for the integration of the drive shaft in the RACER’s wing configuration[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-11. |
10 | JIMENEZ GARCIA A, BARAKOS G N. Numerical simulations on the ERICA tiltrotor[J]. Aerospace Science and Technology, 2017, 64: 171-191. |
11 | MAISEL M D, GIULIANETTI D J, DUGAN D C. The history of the XV-15 tilt rotor research aircraft: NASA SP-2000-4517[R]. Washington, D.C.: NASA, 2000. |
12 | DETORE J A, GAFFEY T M. The stopped-rotor variant of the proprotor VTOL aircraft[J]. Journal of the American Helicopter Society, 1970, 15(3): 45-56. |
13 | CHENEY M. The ABC helicopter[C]∥Proceedings of the AIAA/AHS VTOL Research, Design, and Operations Meeting. Reston: AIAA, 1969. |
14 | ROSENSTEIN H. Aerodynamic development of the V-22 tilt rotor[C]∥The 12th European Rotorcraft Forum. Garmisch: ERF, 1986. |
15 | WENTRUP M, YIN J, KUNZE P, et al. An overview of DLR compound rotorcraft aerodynamics and aeroacoustics activities within the cleansky2 NACOR project[C]∥The AHS International 74th Annual Forum & Technology Display. 2018. |
16 | SCHRAGE D P, STANZIONE K. Assessing the impact of hybrid distributed electric propulsion on VTOL aircraft design & system effectiveness[C]∥The AHS International 74th Annual Forum &Technology Display. 2018. |
17 | BAGAI A. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]∥The 64th Annual National Forum of AHS. 2008: 1-16. |
18 | RUDDELL A J. Advancing blade concept (ABC) technology demonstrator: TR-81-d-5[R]. Stratford: AVRA?DCOM, 1981. |
19 | LINDEN A W, SIMON D, SCOTT L E. XH-59A ABC? aircraft flight tests at ft. rucker, Alabama[J]. Aircraft Engineering and Aerospace Technology, 1982, 54(12): 14-18. |
20 | ARENTS D N. An assessment of the hover performance of the XH-59A advancing blade concept demonstration helicopter: USAAMRDL-TN-25[R]. Fort: USAAMRDL, 1977. |
21 | WALSH D, WEINER S, ARIFIAN K, et al. Development testing of the sikorsky X2 technology? demonstrator[C]∥The 65th Annual Forum of the American Helicopter Society International. 2009. |
22 | BOUWER S, COMPANY T B, KAISER E. Design and development of the main rotor gearbox for the Sikorsky boeing SB>1 DEFIANT JMR technology demonstrator aircraft[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-9. |
23 | PATRYHOW R. Sikorsky adapted to meet the U.S. army fara program timeline[C]∥The Vertical Flight Society’s 77th Annual Forum & Technology Display. 2021. |
24 | 徐敏. 倾转旋翼机的发展与关键技术综述[J]. 直升机技术, 2003(2): 40-44. |
XU M. Summary of development and key technologies of tilt-rotor aircraft[J]. Helicopter Technique, 2003(2): 40-44 (in Chinese). | |
25 | 陈恒, 左晓阳, 张玉琢. 倾转旋翼飞机技术发展研究[J]. 飞行力学, 2007, 25(1): 5-8. |
CHEN H, ZUO X Y, ZHANG Y Z. Tiltrotor aircraft key technology developing research[J]. Flight Dynamics, 2007, 25(1): 5-8 (in Chinese). | |
26 | THOMASON T H. THOMASON T H.The bell helicopter XV-3&XV-15 experimental aircraft-lessons learned [C]∥Proceedings of the AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference. 1990:1-9. |
27 | MEHRA R K, PRASANTH R K, GOPALASWAMY S. XV-15 tiltrotor flight control system design using model predictive control[C]∥1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339). Piscataway: IEEE Press, 2002: 139-148. |
28 | 薛蒙, 孙强. 倾转旋翼机军事需求与关键技术分析[J]. 直升机技术, 2020(1): 47-49, 27. |
XUE M, SUN Q. Tiltrotor military requirement and critical technology analysis[J]. Helicopter Technique, 2020(1): 47-49, 27 (in Chinese). | |
29 | 杨军, 吴希明, 凡永华, 等. 倾转旋翼机飞行控制[M]. 北京: 航空工业出版社, 2006. |
YANG J, WU X M, FAN Y H, et al. Flight control of the tilt-rotor aircraft[M]. Beijing: Aviation Industry Press, 2006 (in Chinese). | |
30 | 张庆, 殷永亮, 吴超. 美军倾转旋翼机的发展和事故分析[J]. 科学之友, 2011(10): 126-128. |
ZHANG Q, YIN Y L, WU C. Development and crash analysis of the American army inclines and transfers to the gyroplane[J]. Friend of Science Amateurs, 2011(10): 126-128 (in Chinese). | |
31 | BOLKCOM C. V-22 osprey tilt-rotor aircraft[EB/OL].(2021-02-08)[2023-09-10]. . |
32 | GERYLER J. V-22 Osprey tilt-rotor aircraft: Blackground and issues for congress, congressional research service[R]. Washington, D.C.: CRS Report for Congress, 2011. |
33 | 肖江涛. 新型无人倾转旋翼机过渡状态飞行控制律设计[D]. 南京: 南京航空航天大学, 2021. |
XIAO J T. Design of flight control law for the new configuration unmanned tilt-rotor aircraft in transition state[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
34 | 刘乾坤. 电驱无人倾转旋翼飞行器动力总成设计与仿真[D]. 南京: 南京航空航天大学, 2020. |
LIU Q K. Design and simulation of electric drive unmanned tilting rotorcraft powertrain[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
35 | HUBER M.AW609 flight testing achieves milestones[J]. Aviation International News, 2018, 49(11): 47. |
36 | 尹欣繁, 车兵辉, 章贵川, 等. 国外复合式高速直升机发展现状与关键技术[J]. 飞航导弹, 2019(11): 56-60. |
YIN X F, CHE B H, ZHANG G C, et al. Development status and key technologies of compound high-speed helicopters abroad[J]. Aerodynamic Missile Journal, 2019(11): 56-60 (in Chinese). | |
37 | 余震, 王永红. 复合式高速直升机传动系统关键技术分析[J]. 航空动力, 2018(3): 66-68. |
YU Z, WANG Y H. Key technologies of transmission system of high speed helicopters[J]. Aerospace Power, 2018(3): 66-68 (in Chinese). | |
38 | 黄明其, 徐栋霞, 何龙, 等. 常规旋翼构型复合式高速直升机发展概况及关键技术[J]. 航空动力学报, 2021, 36(6): 1156-1168. |
HUANG M Q, XU D X, HE L, et al. Development overview and key technologies of high speed hybrid helicopter with single main rotor[J]. Journal of Aerospace Power, 2021, 36(6): 1156-1168 (in Chinese). | |
39 | 丁达文. 单旋翼复合式高速直升机动力学建模及振动特征分析[D]. 南京: 南京航空航天大学, 2021. |
DING D W. Dynamic modeling and vibration characteristics analysis of A single rotor compound high speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
40 | 何振亚. 复合式高速直升机飞行性能研究[D]. 南京: 南京航空航天大学, 2021. |
HE Z Y. Research on flight performance of compound high-speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
41 | LOVERING Z. A3 by Airbus: Vahana[C]∥73rd Annual Vertical Flight Society Forum. 2010. |
42 | NORTH D D, BUSAN R C, HOWLAND G. Design and fabrication of the Langley aerodrome[C]∥8th Distributed Electric Propution VTOL Tested. AIAA Scitech Forum. Reston: AIAA, 2020. |
43 | MCSWAIN R, GEUTHER S, HOWLAND G, et al. An experimental approach to a rapid propulsion and aeronautics concepts testbed: NASA/TM-2020-220437 [R]. Washington, D.C.: NASA, 2020. |
44 | FERGUSON KEVIN M. Towards a better understanding of the flight mechanics of compound helicopter configurations[D]. Glasgow,Scotland: University of Glasgow, 2015. |
45 | PETER F, ZHAO J G, BOWLES P O, et al. S-97 RAIDER wake-empennage interaction flight data and correlation [C]∥The 77th Annual Forum of the VFS. 2021. |
46 | DENG J H, FAN F, LIU P A, et al. Aerodynamic characteristics of rigid coaxial rotorby wind tunnel test and numerical calculation[J]. Chinese Journal of Aero-nautics,2019, 32(3): 1-9. |
47 | WALSH D, WEINER S, ARIFIAN K, et al. High airspeed testing of the Sikorsky X2 technology(TM) demonstrator [C]∥The 67th Annual Forum of the AHS. 2011. |
48 | ELLER E. X2? load alleviating controls [C]∥The 68th Annual Forum of AHS. 2012: 1-3. |
49 | JACOELLIS G, GANDHI F. Investigation of performance loads and vibrations of a coaxial helicopter in high speed-flight [C]∥The 72nd Annual Forum of the AHS. 2016. |
50 | SYAL M, LEISHMAN J G. Aerodynamic optimization study of a coaxial rotor in hovering flight[J]. Journal of the American Helicopter Society, 2012, 57(4): 1-15. |
51 | LEISHMAN J G, SYAL M. Figure of merit definition for coaxial rotors[J]. Journal of the American Helicopter Society, 2008, 53(3): 290. |
52 | BERGER T, HORN J, AVMC U A C, et al. Flight control design and simulation handling qualities assessment of high speed rotorcraft[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-35. |
53 | SAETTI U. Rotorcraft flight control design with alleviation of unsteady rotor loads [D]. State College: Pennsylvania State University, 2019. |
54 | BLACKWELL R, MILLOTT T. Dynamics design characteristics of the Sikorsky X2 technology demonstrator aircraft[C]∥The 64th AHS Annual Forum Proceedings. 2008: 1-13. |
55 | YEO H, JOHNSON W. Investigation of maximum blade loading capability of lift-offset rotors[J]. Journal of the American Helicopter Society, 2014, 59(1): 1-12. |
56 | GO J I, KIM D H, PARK J S. Performance and vibration analyses of lift-offset helicopters[J]. International Journal of Aerospace Engineering, 2017, 2017: 1865751. |
57 | SCHMAUS J, CHOPRA I. Performance and loads of a model coaxial rotor Part II Prediction validations[C]∥The 72th Annual Forum of the AHS. 2016. |
58 | LEE Y L, KIM D H, PARK J S, et al. Vibration reduction simulations of a lift-offset compound helicopter using two active control techniques[J]. Aerospace Science and Technology, 2020, 106: 106181. |
59 | KWON Y M, HONG S B, PARK J S, et al. Active vibration reductions of a lift-offset compound helicopter using individual blade pitch control with multiple harmonic inputs[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(6): 994-1008. |
60 | BANG S W, HONG S B, LEE Y B, et al. Active airframe vibration control study using a small-scale model for lift-offset compound helicopter[J]. International Journal of Aeronautical and Space Sciences, 2023, 24(1): 77-91. |
61 | BLACKWELL R, MILLOTT T. Dynamics design characteristics of the Sikorsky X2 TechnologyTM demonstrator air-craft[C]∥The 64th Annual Forum of the AHS. 2008,64(1):886. |
62 | APPLETON W, FILIPPONE A, BOJDO N. Interaction effects on the conversion corridor of tiltrotor aircraft[J].The Aeronautical Journal, 2021, 33(3): 1-22. |
63 | 刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报, 2022, 43(12): 126097. |
LIU J H, LI G H, WANG F X. Rotor-wing aerodynamic interference characteristics in conversion mode [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126097 (in Chinese). | |
64 | SAVAGE M C, FARRELL M K, MCVEIGH W, et al. V-22 flight test aerodynamic refinement[C]∥The 39th Annual Forum of the American Helicopter Society. 1993:1167-1175. |
65 | DROANDI G, GIBERTINI G, GRASSI D, et al. Proprotor-wing aerodynamic interaction in the first stages of conversion from helicopter to aeroplane mode[J]. Aerospace Science and Technology, 2016, 58: 116-133. |
66 | NARRAMORE J C. Airfoil design, test, and evaluation for the V-22 tilt rotor vehicle[C]∥43th Annual National Forum of AHS. 1987: 49-60. |
67 | NARRAMORE J. Advanced technology airfoil development for the XV-15 tilt-rotor vehicle[C]∥Proceedings of the AIAA and NASA Ames VSTOL Conference. Reston: AIAA, 1981. |
68 | BEAUMIER P, DECOURS J, LEFEBVRE T, et al. Aerodynamic and aero-acoustic design of modern tilt-rotors: the ONERA experience[C]∥The 6th International Congress of the Aeronautical Sciences. 2008: 1-11. |
69 | THIERRY L, PHILIPPE B, SYLVETTE B, et al. Aerodynamic and aero-acoustic optimization of modern tilt-rotor blades within the adyn project[C]∥European Congress on Computational Methods in Applied Sciences and Engineering. 2004:1-20. |
70 | BERGER T. Handling qualities requirements and control design for high-speed rotorcraft [D]. State College: The Pennsylvania State University, 2019. |
71 | BERRIGAN C, MARK J, PRASAD J V R, et al. Bell V-280 system identification and model validation with flight test data using the joint input-output method[C]∥ Proceedings of the Vertical Flight Society 76th Annual Forum. 2020: 6-89. |
72 | RYSDYK R, CALISE A J, CHEN R T N. Nonlinear adaptive control of tiltrotor aircraft using neural networks[C]∥SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA: SAE International, 1997. |
73 | SOBOL I M, STATNIKOV R B. Selecting optimal parameters in multicriteria problems [M]. 2nd ed. Moscow: Drofa, 2006: 89-105. |
74 | 董凌华, 杨卫东. 倾转旋翼回转颤振参数影响规律研究[J]. 航空科学技术, 2015, 26(11): 49-55. |
DONG L H, YANG W D. Parameters influence study of tiltrotor whirl flutter[J]. Aeronautical Science & Technology, 2015, 26(11): 49-55 (in Chinese). | |
75 | 王福新, 黄明其. 倾转旋翼飞行器的风洞试验技术综述[J]. 实验流体力学, 2005, 19(4): 85-89. |
WANG F X, HUANG M Q. A summary on the wind tunnel test techniques for tilting-rotor aircraft[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(4): 85-89 (in Chinese). | |
76 | VANAKEN J M. Alleviation of whirl-flutter on a joined-wing tilt-rotor aircraft configuration using active controls[C]∥The 47th AHS Annual Forum. 1991, 26: 1-27. |
77 | ACREE C W, PEYRAN R J, JOHNSON W. Rotor design options for improving tiltrotor whirl-flutter stability margins[J]. Journal of the American Helicopter Society, 2001, 46(2): 87-95. |
78 | YEO H. Investigation of UH-60A rotor performance and loads at high advance ratios[J]. Journal of Aircraft, 2013, 50(2): 576-589. |
79 | FREY F, THIEMEIER J, ?HRLE C, et al. Aerodynamic interactions on airbus helicopters’ compound helicopter RACER in cruise flight[C]∥ Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-19. |
80 | TOROPOV M Y, STEPANOV S Y. Modeling of helicopter flight imitation in the vortex ring state[J]. Russian Aeronautics, 2016, 59(4): 517-522. |
81 | ORCHARD M, SOUYHAMPTON U O, NAW-MANS, et al. Some design issues for the optimization of the compound helicopter configuration[C]∥Proceedings of American Helicopter Society 56th Annual Forum. 2000. |
82 | THORSEN A T. A unified control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight[D]. State College: The Pennsylvania State University, 2016. |
83 | BOISARD R. Numerical analysis of rotor/propeller aerodynamic interactions on a high-speed compound helicopter[J]. Journal of the American Helicopter Society, 2022, 67(1): 1-15. |
84 | ?HRLE C, EMBACHER M, HELICOPTERS A, et al. Compound helicopter X3 in high-speed flight: Correlation of simulation and flight test[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 836-874. |
85 | 张卓然, 于立, 李进才, 等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5): 622-634. |
ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 622-634 (in Chinese). | |
86 | SHAO L, UNIVERSITY Z, XIE A, et al. The battery cooling design and simulation study in multirotor eVTOL aircraft[C]∥Proceedings of the Vertical Flight Society 79th Annual Forum. 2023. |
87 | ROIATI R, ANDERSON R, COLLINS K, et al. Development of a multi-rotor eVTOL using RPM, collective, and cyclic control[C]∥The Vertical Flight Society’s 78th Annual Forum &Technology Display. 2022:1-14. |
88 | DROANDI G, SYAL M, BOWER G. Tiltwing multi-rotor aerodynamic modeling in hover, transition and cruise flight conditions[C]∥The 74th Annual Forum & Technology Display. 2018: 1-16. |
89 | BUSAN R C, MURPHY P C, HATKE D B, et al. Wind tunnel testing techniques for a tandem tilt-wing, distributed electric propulsion VTOL aircraft[C]∥Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
90 | GRAHAM WARWICK, 徐德康. NASA 的多发 VTOL 无人机进行飞行试验[J].国际航空, 2015(6): 76-77. |
GRAHAM WARWICK, XU D K. NASA multiple VTOL drones fly tests[J]. International Aviation, 2015(6):76-77 (in Chinese). | |
91 | KATHY B. Ten-engine electric plane completes successful flight test [EB/OL]. (2015-11-24)[2023-04-20]. . |
92 | HOOVER C B, SHEN J W, KRESHOCK A R. Propeller whirl flutter stability and its influence on X-57 aircraft design[J]. Journal of Aircraft, 2018, 55(5): 2169-2175. |
93 | MILLS B, DATTA A. Fundamental studies of variable-voltage hybrid-electric powertrains[J]. Journal of the American Helicopter Society, 2021, 66(2): 1-14. |
94 | 王伟, 周洲, 祝小平, 等. 基于CR理论的大柔性太阳能无人机非线性配平及飞行载荷分析[J]. 西北工业大学学报, 2015, 33(4): 566-572. |
WANG W, ZHOU Z, ZHU X P, et al. CR approach of nonlinear trim and flight load analysis of very flexible solar powered UAV[J]. Journal of Northwestern Polytechnical University, 2015, 33(4): 566-572 (in Chinese). |
/
〈 |
|
〉 |