论文

共轴刚性旋翼高速直升机配平策略优化设计

  • 王梓旭 ,
  • 李攀 ,
  • 鲁可 ,
  • 朱振华 ,
  • 陈仁良
展开
  • 1.南京航空航天大学 直升机动力学全国重点实验室,南京 210016
    2.中国直升机设计研究所,景德镇 333001
.E-mail: lipan@nuaa.edu.cn

收稿日期: 2023-05-30

  修回日期: 2023-06-18

  录用日期: 2023-07-07

  网络出版日期: 2023-07-17

基金资助

航空科学基金(20175752046);航空航天结构力学及控制全国重点实验室青年项目(MCAS-S-0323G01)

Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter

  • Zixu WANG ,
  • Pan LI ,
  • Ke LU ,
  • Zhenhua ZHU ,
  • Renliang CHEN
Expand
  • 1.National Key Laboratory of Helicopter Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.China Helicopter Research and Development Institute,Jingdezhen 333001,China
E-mail: lipan@nuaa.edu.cn

Received date: 2023-05-30

  Revised date: 2023-06-18

  Accepted date: 2023-07-07

  Online published: 2023-07-17

Supported by

Aeronautical Science Foundation of China(20175752046);State Key Laboratory of Mechanics and Control for Aerospace Structures(MCAS-S-0323G01)

摘要

最大巡航速度、最大平飞速度是共轴刚性旋翼高速直升机最重要的性能指标之一,其特殊的构型和工作方式导致其旋翼桨毂载荷问题突出。高速飞行俯仰姿态角、平尾安装角、横向周期变距差动、旋翼转速等配平状态和设计参数对需用功率、桨毂载荷、操稳特性等具有显著的非线性交叉耦合影响,在考虑飞行品质相关要求下开展了高速飞行配平策略优化设计方法研究,为获得飞行性能和桨毂载荷综合最优配平策略提供设计手段。基于共轴刚性旋翼高速直升机非线性飞行动力学模型,分析了不同配平策略设计参数对配平特性、稳定性、操纵性等影响规律;在此基础上,将配平策略设计问题描述为数学优化问题;为提高优化计算效率和降低优化失败风险,基于Kriging代理模型开展配平策略优化设计研究。优化结果表明:在最大巡航速度和最大飞行速度下,相比于基准配平策略,在最优功率配平策略下需用功率分别降低5.7%、6.9%;在最优桨毂力矩配平策略下桨毂力矩载荷分别降低55.6%、55.2%;在需用功率、桨毂力矩综合最优策略下需用功率分别降低1.8%、3.1%,桨毂力矩载荷分别降低49.4%、46.2%,验证了提出的配平策略优化设计方法的有效性。

本文引用格式

王梓旭 , 李攀 , 鲁可 , 朱振华 , 陈仁良 . 共轴刚性旋翼高速直升机配平策略优化设计[J]. 航空学报, 2024 , 45(9) : 529069 -529069 . DOI: 10.7527/S1000-6893.2023.29069

Abstract

The maximum cruise speed and maximum level flight speed are among the most important performance indexes for coaxial rigid rotor high-speed helicopters, whose special configuration and operating mechanism lead to serious rotor hub loading problems. The trim strategy design parameters such as high-speed flight pitch attitude, horizontal tail installation angle, differential lateral cyclic pitch, and rotor speed, induce significant cross-coupling effects on the required power, rotor hub loads, controllability, and stability. In this paper, the optimal design method of the trim strategy for high-speed flight is conducted under the handling qualities requirements. The aim is to provide a methodology for achieving the optimal trim strategy that achieves the best trade-off between flight performance and rotor hub loads. Firstly, based on the nonlinear flight dynamics model of the coaxial rigid rotor high-speed helicopter, the impact of design parameters of different trim strategies on the trim characteristics, stability, and controllability was analyzed. Subsequently, the trim strategy design problem was described as a mathematical optimization problem. Lastly, to improve optimization computational efficiency and reduce the risk of optimization failure, the trim strategy optimization design was conducted based on the Kriging surrogate model. The optimization results indicate that, at the maximum cruise speed and maximum flight speed, the required power is reduced by 5.7% and 6.9% under the optimal power trim strategy compared to the baseline strategy; the rotor hub moment load is reduced by 55.6% and 55.2% under the optimal rotor hub moment trim strategy; the required power is reduced by 1.8% and 3.1%, and the hub moment load is reduced by 49.4% and 46.2%, under the integrated optimal strategies for both power and hub moment. These results validate the effectiveness of the proposed optimization design method for trim strategy.

参考文献

1 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报201547(2): 173-179.
  WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics201547(2): 173-179 (in Chinese).
2 李春华, 樊枫, 徐明. 共轴刚性旋翼构型高速直升机发展研究[J]. 航空科学技术202132(1): 47-52.
  LI C H, FAN F, XU M. The development overview of coaxial rigid rotor helicopter[J]. Aeronautical Science & Technology202132(1): 47-52 (in Chinese).
3 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术2012(3): 9-14.
  DENG J H. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology2012(3): 9-14 (in Chinese).
4 RUDDELL A J, MACRINO J A. Advancing blade concept (ABC) high speed development[C]∥The 36th Annua1 Forum of the American Helicopter Society. Washington, D. C.: American Helicopter Society, 1980: 1-13.
5 CHENEY M C. The ABC helicopter[J]. Journal of the American Helicopter Society196914(4): 10-19.
6 COOPER D E, KLINGLOFF R F. Control for helicopter having dual rigid rotors: US4008979A[P]. 1975-11-13.
7 BAGAI A. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]∥The 64th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 2008: 1-16.
8 ELLER E, GREENFIELD A L, WULFF O, et al. Elevator load alleviating control for a rotary wing aircraft: US20170029093A1[P]. 2017-02-02.
9 EREZ E. X2TM load alleviating contRols[C]∥The 68th Annual Forum of Texas. Washington, D. C.: American Helicopter Society, 2012: 1578-1588.
10 FERGUSON K M, THOMSON D. Flight dynamics investigation of compound helicopter configurations[J]. Journal of Aircraft201552(1): 156-167.
11 FERGUSON K M. Towards a better understanding of the flight mechanics of compound helicopter configurations[D]. Glasgow: University of Glasgow, 2015.
12 袁野. 共轴刚性双旋翼复合式高速直升机飞行动力学研究[D]. 南京: 南京航空航天大学, 2019: 80-92.
  YUAN Y. Flight dynamics research for coaxial rigid rotor compound high-speed[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 80-92. (in Chinese).
13 YUAN Y, THOMSON D, CHEN R L. Investigation of lift offset on flight dynamics characteristics for coaxial compound helicopters[J]. Journal of Aircraft201956(6): 2210-2222.
14 佘明人. 共轴刚性旋翼高速直升机飞行动力学建模及飞行特性研究[D]. 南京: 南京航空航天大学, 2021: 36-66.
  SHE M R. Research on flight dynamics modeling and flight characteristics of coaxial rigid rotor high-speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 36-66 (in Chinese).
15 陈仁良, 李攀, 吴伟, 等. 直升机飞行动力学数学建模问题[J]. 航空学报201738(7): 520915-520915.
  CHEN R L, LI P, WU W, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica201738(7): 520915-520915 (in Chinese).
16 李攀. 旋翼非定常自由尾迹及高置信度直升机飞行力学建模研究[D]. 南京: 南京航空航天大学, 2010: 57.
  LI P. Rotor Unsteady Free-Vortex Wake Model and Investigation on High-Fidelity Modeling of Helicopter Flight Dynamics [D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 57 (in Chinese).
17 KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the South African Institute of Mining and Metallurgy195152(6): 201-203.
18 SCHMIT L A, FARSHI B. Some approximation concepts for structural synthesis[J]. AIAA Journal197412(5): 692-699.
19 MULLUR A A, MESSAC A. Extended radial basis functions: More flexible and effective metamodeling[J]. AIAA Journal200543(6): 1306-1315.
20 ELANAYAR S V T, SHIN Y C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems[J]. IEEE Transactions on Neural Networks19945(4): 594-603.
21 宋超, 杨旭东, 宋文萍. 耦合梯度与分级Kriging模型的高效气动优化方法[J]. 航空学报201637(7): 2144-2155.
  SONG C, YANG X D, SONG W P. Efficient aerodynamic optimization method using hierarchical Kriging model combined with gradient[J]. Acta Aeronautica et Astronautica Sinica201637(7): 2144-2155 (in Chinese).
22 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报201435(11): 2910-2920.
  XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica201435(11): 2910-2920 (in Chinese).
23 刘克龙, 姚卫星, 穆雪峰. 基于Kriging代理模型的结构形状优化方法研究[J]. 计算力学学报200623(3): 344-347,362.
  LIU K L, YAO W X, MU X F. A method of structural shape optimization based on Kriging model[J]. Chinese Journal of Computational Mechanics200623(3): 344-347,362 (in Chinese).
24 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
25 PITT D M, PETER D A. Theoretical prediction of dynamic inflow derivatives[J]. Vertica19815(1): 21-34.
26 袁野, 陈仁良, 李攀. 基于涡环尾迹模型的共轴刚性旋翼直升机飞行动力学建模[J]. 航空学报201839(3): 121564.
  YUAN Y, CHEN R L, LI P. Flight dynamic modelling for coaxial rigid rotor helicopter using vortex-ring wake model[J]. Acta Aeronautica et Astronautica Sinica201839(3): 121564 (in Chinese).
27 赵珅宁, 李攀, 张亚飞, 等. 一种新的旋翼动态尾迹模型研究[J]. 南京航空航天大学学报201648(2): 212-217.
  ZHAO S N, LI P, ZHANG Y F, et al. Study on new rotor dynamic wake model[J]. Journal of Nanjing University of Aeronautics & Astronautics201648(2): 212-217 (in Chinese).
28 RUDDELL A. Advancing blade concept (ABC) technology demonstrator: TR-81-D-5[R]. Stratford: AVRADCOM, 1981.
29 PHELPS A, MINECK R. Aerodynamic characteristics of a counter-rotating, coaxial, hingeless rotor helicopter model with auxiliary propulsion: TM-78705[R]. Washington, D. C.: NASA, 1978.
30 FELKER F F. Performance and loads data from a wind tunnel test of a full-scale, coaxial, hingeless rotor helicopter: TM-81329[R]. Washington, D. C.: NASA, 1981.
31 JOHNSON W. Influence of lift offset on rotorcraft performance: TP-2009-215404[R]. Washington, D. C.: NASA, 2013.
32 SALMIRS S, TAPSCOTT R J. The effects of various combinations of damping and control power on handling qualities during both instrument and visual flight: TN-D-58[R]. Washington, D. C.: NASA, 1959.
33 ANON. Military specification flying qualities of piloted V/STOL aircraft: [S]. Washington, D. C.: Military and Government Specs & Standards, 1970: 80-92.
34 JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization200121(4): 345-383.
35 JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization199813(4): 455-492.
36 中央军委装备发展部. 军用直升机飞行品质: [S]. 北京: 中国标准出版社, 2017: 23-56.
  MILITARY COMMISSION E PMENT DEPARTMENT. Flying qualities specification of military helicopter: [S]. Beijing: Standards Press of China, 2017: 23-56 (in Chinese).
37 DAS I, DENNIS J E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization19988(3): 631-657.
文章导航

/