高速共轴刚性旋翼非定常流动高精度数值模拟
收稿日期: 2023-05-30
修回日期: 2023-07-13
录用日期: 2023-09-06
网络出版日期: 2023-09-15
基金资助
中国博士后科学基金(2022M722244);航空科学基金(ASFC-20230007019001)
High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors
Received date: 2023-05-30
Revised date: 2023-07-13
Accepted date: 2023-09-06
Online published: 2023-09-15
Supported by
China Postdoctoral Science Foundation(2022M722244);Aeronautical Science Foundation of China(ASFC-20230007019001)
高速共轴刚性旋翼在前飞状态下会产生复杂的非定常涡干扰流动结构及较强的激波,对高速直升机的气动、噪声及振动特性有着重要的影响,这些流动现象的高分辨率捕捉是高速直升机CFD研究中的难点之一。发展了可在大规模并行计算中实现负载均衡的运动嵌套网格系统,提出了能够在人工边界上保持高阶精度的高效嵌套关系辨识及插值方法;在嵌套网格上应用了发展的谱特性自适应优化的五阶非多项式重构WENO格式(WENO-K)和改进的延迟脱体涡模拟(IDDES)方法,从而提高对非定常多尺度流动结构的空间数值分辨率及时间保持能力。针对简单四桨共轴旋翼及X-2验证机的八桨共轴旋翼,进行了非定常涡流场高精度数值模拟,研究了高速共轴刚性旋翼桨尖涡结构的生成、发展、演化过程及涡干扰机制。计算结果表明,高阶格式结合IDDES方法能够显著降低数值耗散并提高多尺度湍流结构的分辨率,捕捉到了桨尖涡的高速发展演化过程及桨-涡干扰现象,并能够分辨出桨叶后缘生成的马蹄状的精细涡面结构,有利于高速共轴旋翼涡流场干扰机制及气动噪声的深入研究。
韩少强 , 宋文萍 , 韩忠华 , 许建华 . 高速共轴刚性旋翼非定常流动高精度数值模拟[J]. 航空学报, 2024 , 45(9) : 529064 -529064 . DOI: 10.7527/S1000-6893.2023.29064
High-speed coaxial rotor systems generate complex unsteady vortical flow structures and strong shock waves at forward flight, which significantly impact the aerodynamics, noise, and vibration characteristics of high-speed helicopters. Capturing these flow phenomena with high resolution is one of the challenges in computational fluid dynamics research for high-speed helicopters. To address this challenge, a dynamic overset grid system capable of load balancing in large-scale parallel computations is developed. An efficient method for identifying overset relationships and an interpolation technique that maintains high-order accuracy at artificial boundaries are proposed. A novel fifth-order WENO-K scheme with adaptively optimized spectral characteristics has been introduced to enhance the numerical resolution and preserve the structures of rotor tip vortices. Additionally, an improved Delayed Detached Eddy Simulation (IDDES) method is used to capture the smaller-scale vortex structures and their unsteady fluctuations in the wake region. High-accuracy numerical simulations of unsteady vortical flow fields of a simple four-blade coaxial rotor and an eight-blade coaxial rotor similar to the X-2 configuration have been conducted. The generation, development, evolution, and vortex interference mechanisms of blade tip vortices of the high-speed rigid rotors are analyzed. The computational results demonstrate that the high-order schemes, when combined with the IDDES method, can effectively reduce numerical dissipation and enhance the resolution of multiscale turbulent structures, and successfully capture the rapid development and evolution of rotor tip vortices, as well as blade-vortex interactions. The sophisticated horseshoe-shaped vortex surface structures formed at the trailing edge of the rotor blades can be also discerned. These findings contribute to a deeper understanding of the vortex interference mechanisms and aerodynamic noise in high-speed coaxial rotor flow fields.
1 | SCHMAUS J H, CHOPRA I. Aeromechanics of rigid coaxial rotor models for wind-tunnel testing[J]. Journal of Aircraft, 2017, 54(4): 1486-1497. |
2 | DENG J H, FAN F, LIU P A, et al. Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation[J]. Chinese Journal of Aeronautics, 2019, 32(3): 568-576. |
3 | KONUS M F. Vortex wake of coaxial rotors in hover[D]. Berkeley: University of California, Berkeley, 2017. |
4 | SILWAL L, RAGHAV V. Preliminary study of the near wake vortex interactions of a coaxial rotor in hover[C]∥Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020: AIAA2020-0305. |
5 | HARIHARAN N, SANKAR L N. High-order essentially nonoscillatory schemes for rotary-wing wake computations[J]. Journal of Aircraft, 2004, 41(2): 258-267. |
6 | HARIHARAN N, EKATERINARIS J, SANKAR L. An evaluation of high order spatial accuracy algorithms for modeling fixed and rotary wing tip regions[C]∥AHS Aerodynamics, Acoustics, and Evaluation Technical Specialists Meeting. Rockville: American Helicopter Society, 2002. |
7 | YESHALA N, EGOLF A, VASILESCU R, et al. Application of higher order spatially accurate schemes to rotors in hover[C]∥24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006: 2818. |
8 | 印智昭, 招启军, 王博. 基于高阶WENO格式的旋翼非定常涡流场数值模拟[J]. 航空学报, 2016, 37(8): 2552-2564. |
YIN Z Z, ZHAO Q J, WANG B. Numerical simulations for unsteady vortex flowfield of rotors based on high-order WENO scheme[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2552-2564 (in Chinese). | |
9 | XU L, WENG P F. Rotor wake capture improvement based on high-order spatially accurate schemes and chimera grids[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1565-1576. |
10 | XU L, WENG P F. High order accurate and low dissipation method for unsteady compressible viscous flow computation on helicopter rotor in forward flight[J]. Journal of Computational Physics, 2014, 258(C): 470-488. |
11 | YANG L, YANG A M. Implementation of spectral difference method on overset grids for compressible inviscid flows[J]. Computers & Fluids, 2016, 140: 500-511. |
12 | HAN S Q, SONG W P, HAN Z H. A novel high-order scheme for numerical simulation of wake flow over helicopter rotors in hover[J]. Chinese Journal of Aeronautics, 2022, 35(5): 260-274. |
13 | SUN Y, SHI Y J, XU G H. Application of high-order WENO scheme in the CFD/FW-H method to predict helicopter rotor blade-vortex interaction tonal noise[J]. Aerospace, 2022, 9(4): 196. |
14 | CHADERJIAN N, BUNING P. High resolution navier-stokes simulation of rotor wakes[C]∥American Helicopter Society 67th Annual Forum. Rockville: American Helicopter Society, 2011. |
15 | CHADERJIAN N. Advances in rotor performance and turbulent wake simulation using DES and adaptive mesh refinement [C]∥Seventh International Conference of Computational Fluid Dynamics. Big Island: ICCFD, 2012: ICCF D7-3506. |
16 | YOON S, LEE H C, and Pulliam T H. Computational study of flow interactions in coaxial rotors[C]∥The AHS Technical Meeting on Aeromechanics Design for Vertical Lift. Rockville: American Helicopter Society, 2016: ARC-E-DAA-TN 24718. |
17 | YOON S, CHAN W M, PULLIAM T H. Computations of torque-balanced coaxial rotor flows[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017: 0052. |
18 | 付炜嘉. 旋翼桨尖涡高精度数值模拟与流动控制研究[D]. 西安: 西北工业大学, 2016: 111-126. |
FU W J. Research on high-precision numerical simulation and flow control of rotor tip vortex[D]. Xi’an: Northwestern Polytechnical University, 2016: 111-126 (in Chinese). | |
19 | 董军, 叶靓. DDES方法在复杂旋翼流场计算中的应用[J]. 航空学报, 2018, 39(6): 121689. |
DONG J, YE L. Application of DDES method to simulation of complicated rotor flowfield[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121689 (in Chinese). | |
20 | 韩少强. 共轴双旋翼流动高精度数值模拟方法研究[D]. 西安:西北工业大学, 2021: 109-140. |
HAN S Q. High-accurate numerical approaches for coaxial rotor blade-tip-vortex simulation[D]. Xi’an: Northwestern Polytechnical University, 2021: 109-140 (in Chinese). | |
21 | JIA Z Q, LEE S. Aerodynamically induced noise of a lift-offset coaxial rotor with pitch attitude in high-speed forward flight[J]. Journal of Sound and Vibration, 2021, 491: 115737. |
22 | HAN S Q, SONG W P, HAN Z H. An improved WENO method based on Gauss-kriging reconstruction with an optimized hyper-parameter[J]. Journal of Computational Physics, 2020, 422: 109742. |
23 | 卢丛玲, 祁浩天, 徐国华. 升力偏置对共轴刚性旋翼前飞气动特性的影响[J]. 航空学报, 2019, 40(11): 122906. |
LU C L, QI H T, XU G H. Influence of lift offset on rigid coaxial rotor aerodynamic characteristics in forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 122906 (in Chinese). | |
24 | SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. |
25 | HAASE W, BRAZA M, REVELL A. DESider-A European Effort on Hybrid RANS-LES Modelling[M]. Berlin, Heidelberg: Springer, 2009. |
26 | OLSEN J. Compendium of unsteady aerodynamic measurements: AGARD-R-702[R]. Brussels: Advisory Group for Aerospace Research and Development, 1982. |
27 | PASSE B J, SRIDHARAN A, BAEDER J D. Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight[C]∥33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015: 2883. |
/
〈 |
|
〉 |