多飞行状态倾转旋翼气动优化设计
收稿日期: 2023-05-22
修回日期: 2023-06-28
录用日期: 2023-07-10
网络出版日期: 2023-07-17
基金资助
国家自然科学基金(U21B2054)
Aerodynamic optimization design of tiltrotor under multiple flight conditions
Received date: 2023-05-22
Revised date: 2023-06-28
Accepted date: 2023-07-10
Online published: 2023-07-17
Supported by
National Natural Science Foundation of China(U21B2054)
基于动量叶素理论建立了涵盖悬停、倾斜前飞和高速巡航多飞行状态倾转旋翼气动性能计算模型,将计算模型配合NSGA-II多目标遗传算法(NSGA-II),以倾转旋翼悬停、倾斜前飞和高速巡航飞行效率为优化目标,桨叶翼型展向分布、弦长和扭转角等参数为优化变量,设计了一款倾转旋翼。采用由经典的分离涡模拟方法(DES)改进得到的延迟分离涡模拟方法(DDES)对旋翼流场进行模拟仿真,捕获了较高精度的流场尾迹,分析了倾转旋翼流场的诱导速度分布,同时验证了动量叶素理论计算模型具有较高准确性和可信度。计算结果表明,同样飞行工况下,相较于原参考倾转旋翼模型,悬停效率从71.78%提高到75.34%,巡航效率从62.93%提高到71.32%。
王宗辉 , 杨云军 , 赵弘睿 , 王雪晨 . 多飞行状态倾转旋翼气动优化设计[J]. 航空学报, 2024 , 45(9) : 529024 -529024 . DOI: 10.7527/S1000-6893.2023.29024
A calculation model for the aerodynamic performance of tiltrotors was established based on the blade element momentum theory. The calculation model was combined with the NSGA-II multi-objective genetic algorithm to optimize the efficiency of the tiltrotor in hover, tilt forward flight, and high-speed cruise flight conditions. Parameters such as blade airfoil selection distribution, chord length and twist angle were used as optimization variables to design a tiltrotor. The rotor flow field was simulated by using the Delayed Detached Eddy Simulation (DDES) method improved from the classical Detached Eddy Simulation (DES). The flow wake with high accuracy was captured, and the induced velocity distribution of the tiltrotor flow field was analyzed. At the same time, the high accuracy and reliability of the blade element momentum theory theoretical calculation model were verified. The calculation results show that under the same flight conditions, compared with the original tiltrotor model, the hovering efficiency increases from 71.78% to 75.34%, and the cruising efficiency increases from 62.93% to 71.32%.
1 | 王适存. 直升机空气动力学[M]. 南京: 航空专业教材编审组, 1985: 1-4. |
WANG S C. Helicopter aerodynamics[M]. Nanjing: Compilation and Review Group of Aviation Professional Textbooks, 1985: 1-4 (in Chinese). | |
2 | 邓景辉. 直升机技术发展与展望[J]. 航空科学技术, 2021, 32(1): 10-16. |
DENG J H. Development and prospect of helicopter technology[J]. Aeronautical Science & Technology, 2021, 32(1): 10-16 (in Chinese). | |
3 | LEISHMAN J G, ROSEN K M. Challenges in the aerodynamic optimization of high-efficiency proprotors[J]. Journal of the American Helicopter Society, 2011, 56(1): 12004-1200421. |
4 | VAN TRUONG K. Modeling aerodynamics, including dynamic stall, for comprehensive analysis of helicopter rotors[J]. Aerospace, 2017, 4(2): 21. |
5 | ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics, 2018, 31(2): 214-224. |
6 | BAILLY J, BAILLY D. Multifidelity aerodynamic optimization of a helicopter rotor blade[J]. AIAA Journal, 2019, 57(8): 3132-3144. |
7 | GUR O, ROSEN A. Comparison between blade-element models of propellers[J]. The Aeronautical Journal, 2008, 112(1138): 689-704. |
8 | KOCJAN J, KACHEL S, ROGóLSKI R. Helicopter main rotor blade parametric design for a preliminary aerodynamic analysis supported by CFD or panel method[J]. Materials, 2022, 15(12): 4275. |
9 | LI P, ZHAO Q J, ZHU Q X. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1593-1605. |
10 | STAHLHUT C W. Aerodynamic design optimization of proprotors for convertible-rotor concepts[D]. Maryland: University of Maryland, 2012: 16-39. |
11 | KHAN W, NAHON M. A propeller model for general forward flight conditions[J]. International Journal of Intelligent Unmanned Systems, 2015, 3(2/3): 72-92. |
12 | MACNEILL R, VERSTRAETE D. Blade element momentum theory extended to model low Reynolds number propeller performance[J]. The Aeronautical Journal, 2017, 121(1240): 835-857. |
13 | JIMENEZ-GARCIA A, BIAVA M, BARAKOS G N, et al. Tiltrotor CFD Part II - aerodynamic optimisation of tiltrotor blades[J]. The Aeronautical Journal, 2017, 121(1239): 611-636. |
14 | 孙凯军, 张练, 付义伟, 等. 某型倾转旋翼机的旋翼桨叶气动优化设计[J]. 航空工程进展, 2019, 10(3): 340-347. |
SUN K J, ZHANG L, FU Y W, et al. Aerodynamic optimization design of the rotor blade of a tilt-rotor aircraft[J]. Advances in Aeronautical Science and Engineering, 2019, 10(3): 340-347 (in Chinese). | |
15 | 闫文辉, 邓佳子, 王向阳, 等. 旋翼螺旋桨巡航及悬停状态气动特性研究[J]. 推进技术, 2022, 43(8): 187-194. |
YAN W H, DENG J Z, WANG X Y, et al. Aerodynamic performance of rotor propeller in cruise and hover status[J]. Journal of Propulsion Technology, 2022, 43(8): 187-194 (in Chinese). | |
16 | 招启军, 徐国华. 基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法[J]. 空气动力学学报, 2006, 24(1): 15-21. |
ZHAO Q J, XU G H. A hybrid method based on Navier-Stokes/free wake/full-potential solver for rotor flow simulations[J]. Acta Aerodynamica Sinica, 2006, 24(1): 15-21 (in Chinese). | |
17 | 招启军, 蒋霜, 李鹏, 等. 基于CFD方法的倾转旋翼/螺旋桨气动优化分析[J]. 空气动力学学报, 2017, 35(4): 544-553. |
QIAO/ZHAO/ZHE) Q J, JIANG S, LI P, et al. Aerodynamic optimization analyses of tiltrotor/propeller based on CFD method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 544-553 (in Chinese). | |
18 | LEE-RAUSCH E M, BIEDRON R. Simulation of an isolated tiltrotor in hover with an unstructured overset-grid RANS solver[C]∥ Journal of the American Helicopter So-ciety 65th Annual Forum. Fairfax: AHS, 2009. |
19 | 李鹏, 招启军. 悬停状态倾转旋翼 /机翼干扰流场及气动力的CFD计算[J]. 航空学报, 2014, 35(2): 361-371. |
LI P, ZHAO Q J. CFD calculations on the interaction flowfield and aerodynamics force of tiltrotor/wing in hover[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 361-371 (in Chinese). | |
20 | 李鹏, 招启军, 汪正中, 等. 过渡状态倾转旋翼气动力模拟的高效CFD方法[J]. 南京航空航天大学学报, 2015, 47(2): 189-197. |
LI P, ZHAO Q J, WANG Z Z, et al. Highly-efficient CFD method for predicting aerodynamic force of tiltrotor in conversion mode[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 189-197 (in Chinese). | |
21 | ZHAO G Q, ZHAO Q J, LI P, et al. Parametric analyses for effects of RPM and diameter on tiltrotor aerodynamic performances in hovering and cruise mode[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(3): 479-488. |
22 | TRAN S A, LIM J W. Interactional aerodynamics of the XV-15 tiltrotor aircraft during conversion maneuvers[J]. Journal of the American Helicopter Society, 2022, 67(3): 56-68. |
23 | 刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报, 2022, 43(12): 126091. |
LIU J H, LI G H, WANG F X. Rotor-wing aerodynamic interference characteristics in conversion mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126091 (in Chinese). | |
24 | 刘周, 杨云军, 周伟江, 等. 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014, 35(2): 372-380. |
LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380 (in Chinese). | |
25 | LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2006. |
26 | PROUTY R W. 直升机性能及稳定性和操纵性[M]. 高正, 译. 北京: 航空工业出版社, 1990: 500-511. |
PROUTY R W . performance Helicopter, stability, and maneu-verability[M]. GAO Z, translated. Beijing: Aviation In-dustry Press, 1990: 500-511 (in Chinese). | |
27 | THEYS B, DIMITRIADIS G, ANDRIANNE T, et al. Wind tunnel testing of a VTOL MAV propeller in tilted operating mode[C]∥ 2014 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2014: 1064-1072. |
28 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
/
〈 |
|
〉 |