基于极化气象雷达的空飘气球检测方法
收稿日期: 2024-01-18
修回日期: 2024-04-09
录用日期: 2024-05-13
网络出版日期: 2024-05-29
基金资助
国家自然科学基金(61971429);国防科技大学科研计划项目(ZK21-25);湖南省研究生科研创新项目(QL20220012)
Detection of air balloon with polarimetric weather radar
Received date: 2024-01-18
Revised date: 2024-04-09
Accepted date: 2024-05-13
Online published: 2024-05-29
Supported by
National Natural Science Foundation of China(61971429);Research Program of National University of Defense Technology(ZK21-25);Hunan Province Postgraduate Research Innovation Project(QL20220012)
近年来空飘气球引发的新兴异常空情对国土安全、防空安全和民航安全产生重大的威胁。空飘气球具有介质材料组成、表面光滑等低雷达观测的特点,针对现有机场等场所检测空飘气球手段不足的难题,通过提取空飘气球的散射特征并提出一种基于相干脉冲修正比的极化融合空飘气球检测方法。该方法利用空飘气球目标的相干脉冲修正比对地杂波进行判断和滤除,再通过极化相关性特征进行极化融合处理以降低虚警,最后通过图形形态学方法进一步剔除虚假目标。双极化气象雷达实测空飘气球数据的处理结果表明所提方法能够有效检测出空飘气球并降低背景杂波、射频干扰虚警。所提方法充分考虑空飘气球的散射特性,性能比传统方法高3.2 dB。所提方法在不影响现有气象雷达业务功能的同时赋予其空飘气球探测预警能力,具有计算量小和易于实现等特点,有望广泛应用于现有极化气象雷达中。
黄建开 , 殷加鹏 , 安孟昀 , 庞晨 , 李永祯 , 王雪松 . 基于极化气象雷达的空飘气球检测方法[J]. 航空学报, 2024 , 45(14) : 630188 -630188 . DOI: 10.7527/S1000-6893.2024.30188
In recent years, the emergence of anomalous aerial situations induced by air balloons has posed significant threats to national security, airspace security, and civil aviation safety. Air balloons, characterized by their composition of medium materials and smooth surface, elude conventional radar detection. To address the inadequacy of current methods in detecting air balloons at airports and similar facilities, this study proposes a novel detection approach based on polarimetric fusion utilizing the coherent pulse compression ratio. The coherent pulse compression ratio of air balloon targets is leveraged to discern and filter out ground clutter. Then, polarization fusion processing is conducted to reduce false alarms, and further refinement is made using morphological image analysis to eliminate spurious targets. Results of processing real-world air balloon data collected by dual-polarization weather radar shows that this method demonstrates effective detection and reduced background clutter and RF interference false alarms. The proposed approach, considering the scattering characteristics of air balloons, exhibits a performance enhancement of 3.2 dB over conventional methods. Notably, it equips existing polarimetric weather radar systems with air balloon detection and early warning capabilities without compromising their current operational functionalities. With its computational efficiency and practical implementation feasibility, this method holds promise for wide-spread integration into existing polarimetric weather radar systems.
1 | 杨建军, 廖秋燕, 王卫星, 等. 空飘球在军事对抗中的运用[J]. 舰船电子对抗, 2022, 45(2): 28-31. |
YANG J J, LIAO Q Y, WANG W X, et al. Application of air floating ball to military confrontation[J]. Shipboard Electronic Countermeasure, 2022, 45(2): 28-31 (in Chinese). | |
2 | BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588: 77-82. |
3 | 邓小龙, 杨希祥, 朱炳杰, 等. 智能平流层浮空器Loon关键技术分析与仿真[J]. 航空学报, 2023, 44(8): 127412. |
DENG X L, YANG X X, ZHU B J, et al. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 127412 (in Chinese). | |
4 | 彭桂林, 万志强. 中国浮空器遥感遥测应用现状与展望[J]. 地球信息科学学报, 2019, 21(4): 504-511. |
PENG G L, WAN Z Q. The present situation and prospect of aerostat applied to remote sensing and remote survey in China[J]. Journal of Geo-Information Science, 2019, 21(4): 504-511 (in Chinese). | |
5 | FAQIHURROHMAN A, MARTONO H K. State responsibilities on the disturbance of the flight path to Yogyakarta by air balloons to guarantee flight safety[C]∥Proceedings of the 2nd Tarumanagara International Conference on the Applications of Social Sciences and Humanities (TICASH 2020). Paris: Atlantis Press, 2020: 815-821. |
6 | SIMON HRADECKY. Qatar B773 at Sao Paulo on Jul 3rd 2022, hot air balloon on final approach[EB/OL]. (2022-7-4)[2023-7-30]. . |
7 | YAN B, PAOLINI E, XU L P, et al. A target detection and tracking method for multiple radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114721. |
8 | 马伊清. 民航机场天气雷达现状及应用需求分析[J]. 电子世界, 2019(1): 96, 98. |
MA Y Q. Present situation and application demand analysis of weather radar in civil aviation airport[J]. Electronics World, 2019(1): 96, 98 (in Chinese). | |
9 | 陈唯实, 黄毅峰, 卢贤锋, 等. 基于气象雷达的鸟类迁徙监视预警[J]. 中国民用航空, 2020, 325: 48-51. |
CHEN W S, HUANG Y F, LU X F, et al. Surveillance and early warning of bird migration based on weather radar[J]. China Civil Aviation, 2020, 325: 48-51 (in Chinese). | |
10 | 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119-131. |
WANG X S. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119-131 (in Chinese). | |
11 | BRINGI V N, CHANDRASEKAR V. Polarimetric Doppler weather radar: Principles and applications[M]. Cambridge: Cambridge University Press, 2001. |
12 | SINCLAIR G. The transmission and reception of elliptically polarized waves[J]. Proceedings of the IRE, 1950, 38(2): 148-151. |
13 | KENNAUGH M E. Polarization properties of radar reflections [D]. Columbus: The Ohio State University, 1952. |
14 | HUYNEN J R. Phenomenological theory of radar targets[M]∥Electromagnetic Scattering. Amsterdam: Elsevier, 1978: 653-712. |
15 | YAMAGUCHI Y, BOERNER W M, EOM H J, et al. On characteristic polarization states in the cross-polarized radar channel[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 1078-1080. |
16 | YAMAGUCHI Y. Fundamentals of polarimetric radar and its application [M]. Tokyo: Realize Inc., 1998. |
17 | CLOUDE S R, POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518. |
18 | KROGAGER E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26: 1525-1527. |
19 | CAMERON W L, LEUNG L K. Feature motivated polarization scattering matrix decomposition[C]∥IEEE International Conference on Radar. Piscataway: IEEE Press, 2002: 549-557. |
20 | CAMERON W L, YOUSSEF N N, LEUNG L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 793-803. |
21 | CAMERON W L, RAIS H. Conservative polarimetric scatterers and their role in incorrect extensions of the Cameron decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3506-3516. |
22 | FREEMAN A, DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973. |
23 | CLOUDE S R, POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE transactions on geoscience and remote sensing, 1997, 35(1): 68-78. |
24 | 杨健, 曾亮, 马文婷, 等. 雷达目标极化散射特征提取的研究进展[J]. 电波科学学报, 2019, 34(1): 12-18. |
YANG J, ZENG L, MA W T, et al. Recent advances on extraction of polarimetric scattering features of radar target[J]. Chinese Journal of Radio Science, 2019, 34(1): 12-18 (in Chinese). | |
25 | GAUTHREAUX S A Jr, SHAPIRO A M, MAYER D, et al. Detecting bird movements with L-band avian radar and S-band dual-polarization Doppler weather radar[J]. Remote Sensing in Ecology and Conservation, 2019, 5(3): 237-246. |
26 | VAN DOREN B M, HORTON K G. A continental system for forecasting bird migration[J]. Science, 2018, 361(6407): 1115-1118. |
27 | STEPANIAN P M, HORTON K G, MELNIKOV V M, et al. Dual-polarization radar products for biological applications[J]. Ecosphere, 2016, 7(11): e01539. |
28 | LIN T Y, WINNER K, BERNSTEIN G, et al. MistNet: Measuring historical bird migration in the US using archived weather radar data and convolutional neural networks[J]. Methods in Ecology and Evolution, 2019, 10(11): 1908-1922. |
29 | DOKTER A M, DESMET P, SPAAKS J H, et al. BioRad: Biological analysis and visualization of weather radar data[J]. Ecography, 2019, 42(5): 852-860. |
30 | NILSSON C, LA SORTE F A, DOKTER A, et al. Bird strikes at commercial airports explained by citizen science and weather radar data[J]. Journal of Applied Ecology, 2021, 58(10): 2029-2039. |
31 | 孙召平, 张持岸, 张建云. 一种基于高斯模型的自适应地物杂波滤波算法[J]. 太赫兹科学与电子信息学报, 2013, 11(2): 250-253, 259. |
SUN Z P, ZHANG C A, ZHANG J Y. An adaptive ground clutter filter algorithm based on Gaussian model[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(2): 250-253, 259 (in Chinese). | |
32 | RICHARDS M A. Fundamentals of radar signal processing[M]. New York: McGraw-Hill, 2005. |
/
〈 |
|
〉 |