论 文

基于惯性/天文深度融合的跨域飞行器异构多源组合导航方法

  • 张新睿 ,
  • 熊智 ,
  • 华冰 ,
  • 康骏 ,
  • 何辉宇
展开
  • 1.南京航空航天大学 自动化学院 导航研究中心,南京 211106
    2.南京航空航天大学 航天学院,南京 211106
.E-mail: xiongzhi@nuaa.edu.cn

收稿日期: 2024-04-26

  修回日期: 2024-04-30

  录用日期: 2024-05-14

  网络出版日期: 2024-05-27

基金资助

基础加强计划173重点项目课题(2020-jcjq-zd-049);民用航天项目(D030313);航空科学基金(2023Z033052001)

A heterogeneous multi-source integrated navigation method for cross-domain vehicles based on inertial/celestial deep fusion

  • Xinrui ZHANG ,
  • Zhi XIONG ,
  • Bing HUA ,
  • Jun KANG ,
  • Huiyu HE
Expand
  • 1.Navigation Research Center,College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  211106,China
    2.College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing  211106,China

Received date: 2024-04-26

  Revised date: 2024-04-30

  Accepted date: 2024-05-14

  Online published: 2024-05-27

Supported by

Key Project Topics of the Basic Strengthening Plan 173(2020-jcjq-zd-049);Advance Research Projects(D030313);Aeronautic Science Foundation of China(2023Z033052001)

摘要

中国计划到2045年实现地面与轨道间以及轨道与轨道间的航班化航天运输。跨域飞行器因其具有的跨速域、跨空域、跨介质域能力,可实现航班化天地往返运输,其特殊的战略价值已经受到各国的高度重视。跨域飞行器飞行过程中需要经历多个高速、复杂的飞行阶段,对导航系统的可靠性和安全性提出了更高要求。因此,亟需发展面向航班化航天运输的跨域飞行器自主导航方法,提升跨域飞行器自主导航能力。针对这一问题,提出了一种基于惯性/天文深度融合的跨域飞行器异构多源组合导航方法,以解决跨域飞行器在实现航班化航天运输中的自主导航问题。结果表明,所提方法能够充分利用惯性导航和天文导航优势互补的特点,对导航误差进行修正,有效提升跨域飞行器导航系统在复杂飞行环境下的输出精度和可靠性,保证跨域飞行器导航系统的安全可靠运行,提升其全飞行阶段中导航系统信息无缝融合能力,为实现航班化航天运输的构想进行技术积累。

本文引用格式

张新睿 , 熊智 , 华冰 , 康骏 , 何辉宇 . 基于惯性/天文深度融合的跨域飞行器异构多源组合导航方法[J]. 航空学报, 2024 , 45(S1) : 730614 -730614 . DOI: 10.7527/S1000-6893.2024.30614

Abstract

China plans to achieve airline-flight-mode space transportation between ground and orbit, as well as between orbit and orbit by 2045. Cross domain vehicles, due to their ability to cross speed, airspace, and media domains, can achieve flight-based back-and-forth transportation between space and earth. Their special strategic value have been highly valued by countries around the world. The flight process of cross domain vehicles requires multiple high-speed and complex flight stages, which puts higher requirements on the reliability and safety of navigation systems. Therefore, there is an urgent need to develop autonomous navigation methods for cross domain vehicles for airline-flight-mode space transportation. To address this issue, this paper proposes a heterogeneous multi-source integrated navigation method for cross domain vehicles based on inertial/celestial deep fusion to solve the autonomous navigation problem of cross domain vehicles in achieving flight oriented space transportation. The results show that the method proposed can fully utilize the complementary advantages of inertial navigation and celestial navigation, correct navigation errors, effectively improve the output accuracy and reliability of cross domain vehicles navigation systems in complex flight environments, ensure the safe and reliable operation of navigation systems of cross domain vehicles, and enhance their seamless information fusion ability in the entire flight stage, accumulating technologies for realizing the concept of airline-flight-mode space transportation.

参考文献

1 李东, 李平岐. 中国航天运输系统发展及未来趋势展望[J]. 前瞻科技20221(1): 51-61.
  LI D, LI P Q. Development and future trend of China’s space transportation system[J]. Science and Technology Foresight20221(1): 51-61 (in Chinese).
2 王巍, 邢朝洋, 冯文帅. 自主导航技术发展现状与趋势[J]. 航空学报202142(11): 525049.
  WANG W, XING C Y, FENG W S. State of the art and perspectives of autonomous navigation technology[J]. Acta Aeronautica et Astronautica Sinica202142(11): 525049 (in Chinese).
3 ZHAO H, XIONG Z, SHI L J, et al. A robust filtering algorithm for integrated navigation system of aerospace vehicle in launch inertial coordinate[J]. Aerospace Science and Technology201658: 629-640.
4 WANG R, XIONG Z, LIU J Y, et al. A new tightly-coupled INS/CNS integrated navigation algorithm with weighted multi-stars observations[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2016230(4): 698-712.
5 KANG J, XIONG Z, WANG R, et al. Multi-layer fault-tolerant robust filter for integrated navigation in launch inertial coordinate system[J]. Aerospace20229(6): 282.
6 KANG J, XIONG Z, WANG R, et al. Resilient multi-source integrated navigation method for aerospace vehicles based on on-line evaluation of redundant information[J]. Aerospace20229(7): 333.
7 NING X L, YANG Y Q, FANG J C, et al. The progress of autonomous celestial navigation for deep space spacecraft[J]. Journal of Deep Space Exploration202310(2): 99-108.
8 ALKHALAF S. A robust variance information fusion technique for real-time autonomous navigation systems[J]. Measurement2021179: 109441.
9 GRANTZ A. X-37B orbital test vehicle and derivatives: AIAA-2011-7315[R]. Reston: AIAA, 2011.
10 LóPEZ-LAGO M, SERNA J, CASADO R, et al. Present and future of air navigation: PBN operations and supporting technologies[J]. International Journal of Aeronautical and Space Sciences202021(2): 451-468.
11 LEE S, LEE Y, LEE S, et al. Data-driven capturability analysis for pure proportional navigation guidance considering target maneuver[J]. International Journal of Aeronautical and Space Sciences202122(5): 1209-1221.
12 PAN C, LIU J, KANG Z W, et al. Solar TDOA/doppler difference joint observation navigation for the approach phase of Mars exploration[J]. International Journal of Aeronautical and Space Sciences202021(3): 836-844.
13 WANG R, LIU J Y, XIONG Z, et al. Double-layer fusion algorithm for EGI-based system[J]. Aircraft Engineering and Aerospace Technology201385(4): 258-266.
14 MAGREE D, JOHNSON E N. Factored extended Kalman filter for monocular vision-aided inertial navigation[J]. Journal of Aerospace Information Systems201613(12): 475-490.
15 VETRELLA A R, FASANO G, ACCARDO D. Satellite and vision-aided sensor fusion for cooperative navigation of unmanned aircraft swarms[J]. Journal of Aerospace Information Systems201714(6): 327-344.
16 房建成, 宁晓琳. 天文导航原理及应用[M]. 北京: 北京航空航天大学出版社, 2006: 92-93.
  FANG J C, NING X L. Principles and applications of celestial navigation [M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006: 92-93 (in Chinese).
17 NING X L, YUAN W P, LIU Y H. A tightly coupled rotational SINS/CNS integrated navigation method for aircraft[J]. Journal of Systems Engineering and Electronics201930(4): 770-782.
18 刘建业. 导航系统理论与应用[M]. 西安: 西北工业大学出版社, 2010: 366-372.
  LIU J Y. Theory and application of navigation system[M]. Xi’an: Northwestern Polytechnical University Press, 2010: 366-372 (in Chinese).
19 吕建强. 惯性/卫星组合导航参数在线估计方法研究[D]. 北京: 中国运载火箭技术研究院, 2016: 19-20.
  LYU J Q. Research on online estimation method of combined inertial/satellite navigation parameters[D]. Beijing: China Academy of Launch Vehicle Technology, 2016: 19-20 (in Chinese).
20 邵梦晗. 惯性/卫星组合导航状态在线评估与优化[D]. 北京: 中国运载火箭技术研究院, 2019: 36-37.
  SHAO M H. Online evaluation and optimization of INS/GNSS integrated navigation[D]. Beijing: China Academy of Launch Vehicle Technology, 2019: 36-37 (in Chinese).
文章导航

/