深空光电测量与智能感知技术专栏

基于旋转偏振光栅与快反镜的单探测器复合跟瞄系统

  • 王伟 ,
  • 姜会林 ,
  • 陈明策 ,
  • 董岩 ,
  • 徐卿 ,
  • 王立 ,
  • 董科研 ,
  • 安岩
展开
  • 1.长春理工大学 光电工程学院,长春 130022
    2.光电测控与光信息传输技术教育部重点实验室,长春 130022
    3.北京控制工程研究所 空间光电测量与感知实验室,北京 100190
    4.长春理工大学 电子信息工程学院,长春 13002

收稿日期: 2024-04-16

  修回日期: 2024-05-06

  录用日期: 2024-05-17

  网络出版日期: 2024-05-27

基金资助

光电测量与智能感知中关村开放实验室与北京控制工程研究所空间光电测量与感知实验室开放基金资助(LabSOMP-2022-10);吉林省重大科技专项(20230301002GX);国家自然科学基金青年科学基金项目(62305032);吉林省科技发展计划重点研发项目(20210201022GX)

Single detector composite tracking system based on rotating polarization grating and fast steering mirror

  • Wei WANG ,
  • Huilin JIANG ,
  • Mingce CHEN ,
  • Yan DONG ,
  • Qing XU ,
  • Li WANG ,
  • Keyan DONG ,
  • Yan AN
Expand
  • 1.School of Photoelectric Engineering,Changchun University of Science and Technology,Changchun 130022,China
    2.Key Laboratory of Photoelectric Measurement and Control and Optical Information Transfer Technology of Ministry of Education,Changchun 130022,China
    3.Space Optoelectronic Measurement and Perception Lab. ,Beijing Institute of Control Engineering,Beijing 100190,China
    4.School of Electric and Information Engineering,Changchun University of Science and Technology,Changchun 130022,China

Received date: 2024-04-16

  Revised date: 2024-05-06

  Accepted date: 2024-05-17

  Online published: 2024-05-27

Supported by

Optoelectronic Measurement and Intelligent Perception Zhongguancun Open Lab., and Space Optoelectronic Measurment and Perception Lab., Beijing Institute of Control Engineering(LabSOMP-2022-10);Major Science and Technology Special Projects in Jilin Province(20230301002GX);National Natural Science Foundation of China(62305032);Key R&D Plan for Science and Technology Development in Jilin Province(20210201022GX)

摘要

为满足激光通信系统的共形设计和实现轻小型化的空间激光通信组网,设计一种应用于机载平台下的基于偏振光栅与快反镜(FSM)的新型单探测器复合轴系统。针对旋转偏振光栅实际应用与理论之间的差异,将偏振光栅光束偏转问题与目标脱靶量之间进行关联,定义了目标位置与双偏振光栅角度关系,进行了偏振光栅光束偏转坐标构建及解耦。随后对复合系统偏振光栅单元与FSM单元进行设计,通过目标闭环试验检测了系统跟踪性能,结果表明,在5°@0.2 Hz载体扰动情况下,双偏振光栅方位轴、俯仰轴脱靶量闭环残差分别为126.100 2 μrad(RMS)与149.530 9 μrad(RMS),FSM方位轴、俯仰轴脱靶量闭环残差分别为3.492 1 μrad(RMS)与4.013 1 μrad(RMS),动态目标闭环控制双轴精跟踪残差为5.319 7 μrad(RMS),相比于Risley棱镜,光束偏转范围提升4倍,精度提升45.8%。整个跟踪过程中,两偏振光栅旋转角度值连续且平稳变化,满足轻量型机载平台对光电跟瞄设备的使用需求。

本文引用格式

王伟 , 姜会林 , 陈明策 , 董岩 , 徐卿 , 王立 , 董科研 , 安岩 . 基于旋转偏振光栅与快反镜的单探测器复合跟瞄系统[J]. 航空学报, 2025 , 46(3) : 630538 -630538 . DOI: 10.7527/S1000-6893.2024.30538

Abstract

To meet the conformal design of laser communication system and realize lightweight and miniaturization of space laser communication networking, a new single-detector composite axis system based on polarization grating and Fast Steering Mirror (FSM) is designed for airborne platform. In response to the difference between the practical application and theory of rotating polarization gratings, the relationship between the target position and the dual polarization gratings angles is defined by correlating the polarization grating beam deflection problem with the target miss distance, and the polarization grating beam deflection coordinates are constructed and decoupled. Then, the polarization grating unit and FSM unit of the composite system are designed, and the tracking performance of the system is tested through target closed-loop test. The results show that under the disturbance of 5°@0.2 Hz carrier, the closed-loop residual errors of the dual polarization gratings azimuth axis and pitch axis miss distance are respectively 126.100 2 μrad (RMS) and 149.530 9 μrad (RMS), the closed-loop residual errors of FSM azimuth axis and pitch axis miss distance are respectively 3.492 1 μrad (RMS) and 4.013 1 μrad (RMS), and the dual axis precision tracking residual error of dynamic target closed-loop control with is 5.319 7 μrad (RMS). Compared to the Risley prism, the beam deflection range is increased by 4 times, and the accuracy is improved by 45.8%. During the whole tracking process, the rotation angle value of the two polarization grating changes continuously and steadily, which meets the needs of lightweight airborne platform for photoelectric tracking equipment.

参考文献

1 程刚, 杜言鲁, 齐媛, 等. 新型机载光电平台万向架及其关键技术[J]. 应用光学202243(4): 577-582.
  CHENG G, DU Y L, QI Y, et al. New-type gimbal mount of airborne optoelectronic platform and its key technologies[J]. Journal of Applied Optics202243(4): 577-582 (in Chinese).
2 YAO Y X, CHEN K, LI J Y, et al. Closed-loop control of risley prism based on deep reinforcement learning[C]∥2020 International Conference on Computer Engineering and Application (ICCEA). Piscataway: IEEE Press, 2020: 481-488.
3 CARRASCO-CASADO A, MATA-CALVO R. Space optical links for communication networks[M]?∥Springer Handbooks. Cham: Springer Cham, 2020: 1057-1103.
4 郑运强, 刘欢, 孟佳成, 等. 空基激光通信研究进展和趋势以及关键技术[J]. 红外与激光工程202251(6): 379-409.
  ZHENG Y Q, LIU H, MENG J C, et al. Development status, trend and key technologies of air-based laser communication[J]. Infrared and Laser Engineering202251(6): 379-409 (in Chinese).
5 高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势[J]. 中国光学201811(6): 901-913.
  GAO D R, LI T L, SUN Y, et al. Latest developments and trends ofspace laser communication[J]. Chinese Optics201811(6): 901-913 (in Chinese).
6 周远, 陈英, 蒋国保, 等. 旋转双棱镜目标跟踪的非线性问题分析[J]. 光学学报202141(18): 218-230.
  ZHOU Y, CHEN Y, JIANG G B, et al. Nonlinearity problem analysis of target tracking based on rotational double prisms[J]. Acta Optica Sinica202141(18): 218-230 (in Chinese).
7 LI Y J. Closed form analytical inverse solutions for Risley-prism-based beam steering systems in different configurations[J]. Applied Optics201150(22): 4302-4309.
8 LI Y J. Third-order theory of the Risley-prism-based beam steering system[J]. Applied Optics201150(5): 679-686.
9 ZHOU Y, LU Y F, HEI M, et al. Motion control of the wedge prisms in Risley-prism-based beam steering system for precise target tracking[J]. Applied Optics201352(12): 2849-2857.
10 邱赛, 盛磊, 高世杰, 等. 激光通信旋转双棱镜系统误差对指向精度的影响[J]. 光学精密工程202129(6): 1281-1290.
  QIU S, SHENG L, GAO S J, et al. Influence of laser communication Risley prism system error on pointing accuracy[J]. Optics and Precision Engineering202129(6): 1281-1290 (in Chinese).
11 LI J Y, CHEN K, PENG Q, et al. Improvement of pointing accuracy for Risley prisms by parameter identification[J]. Applied Optics201756(26): 7358-7366.
12 OH C, KIM J, MUTH J F, et al. A new beam steering concept: Risley gratings[C]?∥SPIE Proceedings, Advanced Wavefront Control: Methods, Devices, and Applications VII. San Francisco: SPIE, 2009: 179-186.
13 OH C, KIM J, MUTH J, et al. High-throughput continuous beam steering using rotating polarization gratings[J]. IEEE Photonics Technology Letters201022(4): 200-202.
14 ZUO K, SHI Y, LUO D. A review of two-dimensional liquid crystal polarization gratings[J]. Crystals202111(9): 1015.
15 ZHOU Y, FAN D P, FAN S X, et al. Laser scanning by rotating polarization gratings[J]. Applied Optics201655(19): 5149-5157.
16 WANG W, DONG Y, JIANG H L, et al. Research on laser target dynamic tracking system with rotating polarization grating[J]. Optics Express202331(17): 28257-28272.
17 TERVO J, TURUNEN J. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings[J]. Optics Letters200025(11): 785-786.
18 周远, 鲁亚飞, 黑沫, 等. 旋转双棱镜光束指向的反向解析解[J]. 光学精密工程201321(7): 1693-1700.
  ZHOU Y, LU Y F, HEI M, et al. Analytical inverse solutions for rotational double prism beam steering[J]. Optics and Precision Engineering201321(7): 1693-1700 (in Chinese).
19 SAKAMOTO M, NHAN H T, NODA K, et al. Polarized beam steering using multiply-cascaded rotating polarization gratings[J]. Applied Optics202160(7): 2062-2068.
20 王伟, 刘云清, 董岩, 等. 空间激光通信中复合跟踪技术研究[J]. 激光与红外202050(4): 403-406.
  WANG W, LIU Y Q, DONG Y, et al. Research on composite tracking technology in space laser communication[J]. Laser & Infrared202050(4): 403-406 (in Chinese).
21 李锦英, 陈科, 彭起, 等. 旋转双棱镜大范围快速高精度扫描技术[J]. 光电技术应用202035(2): 44-48.
  LI J Y, CHEN K, PENG Q, et al. Wide-range, fast and high precision scanning technology based on rotational double prisms[J]. Electro-Optic Technology Application202035(2): 44-48 (in Chinese).
22 陈万. 高效率宽波段液晶偏振光栅光束偏转技术研究[D]. 长春: 中国科学院大学, 2022.
  CHEN W. Research on beam deflection technology of high efficiency and wide band liquid crystal polarization grating[D]. Changchun: University of Chinese Academy of Sciences, 2022 (in Chinese).
23 倪迎雪. 空间激光通信APT系统中快速反射镜关键技术研究[D]. 北京: 中国科学院大学, 2018: 20-22.
  NI Y X. Research on key technology of fast mirror in space laser communication APT system[D].Beijing: University of Chinese Academy of Sciences, 2018: 20-22. (in Chinese).
文章导航

/