电子电气工程与控制

基于仰角视元模型的星地快速覆盖分析方法

  • 顾轶 ,
  • 孙秀聪 ,
  • 范黎明 ,
  • 刘升刚 ,
  • 伍国华
展开
  • 1.中南大学 交通运输工程学院,长沙 410083
    2.北京航空航天大学 宇航学院,北京 100083
    3.北京空间飞行器总体设计部,北京 100094
    4.中南大学 自动化学院,长沙 410083
.E-mail: guohuawu@csu.edu.cn

收稿日期: 2024-03-12

  修回日期: 2024-04-15

  录用日期: 2024-05-06

  网络出版日期: 2024-05-27

基金资助

国家自然科学基金(62073341)

A rapid satellite-ground coverage analysis method based on elevation view element model

  • Yi GU ,
  • Xiucong SUN ,
  • Liming FAN ,
  • Shenggang LIU ,
  • Guohua WU
Expand
  • 1.School of Traffic and Transportation Engineering,Central South University,Changsha 410083,China
    2.School of Astronautics,Beihang University,Beijing 100083,China
    3.Beijing Institute of Spacecraft System Engineering,Beijing 100094,China
    4.School of Automation,Central South University,Changsha 410083,China

Received date: 2024-03-12

  Revised date: 2024-04-15

  Accepted date: 2024-05-06

  Online published: 2024-05-27

Supported by

National Natural Science Foundation of China(62073341)

摘要

星地覆盖分析技术对于卫星通信、导航、对地观测等任务具有重要作用。本文面向卫星载荷对地覆盖需求,研究考虑地面仰角约束下的快速覆盖分析方法。首先提出了地面仰角视元模型,在此基础上建立地面仰角视元方程,并推导了该方程解析解的表达式。通过将上述结果投影到二维平面上,可以采用轨迹相交法快速求解地面仰角视场对卫星的可见窗口,即卫星满足地面仰角约束的时间范围;进而设计自适应搜索求根法在该区间内快速确定卫星对地面目标的可见窗口。基于地面仰角视元模型的可见窗口计算方法拓宽了视场映射方法计算可见性的适用范围,同时可以保证可见窗口的计算精度和计算效率。通过开展仿真试验,可以发现所提方法的可见窗口计算误差为0.01 s量级,计算效率相比传统数值方法提升了89.7%,这验证了所提出的模型和方法的有效性和高效性。

本文引用格式

顾轶 , 孙秀聪 , 范黎明 , 刘升刚 , 伍国华 . 基于仰角视元模型的星地快速覆盖分析方法[J]. 航空学报, 2024 , 45(23) : 330372 -330372 . DOI: 10.7527/S1000-6893.2024.30372

Abstract

The technology of satellite-ground coverage analysis plays an important role in the tasks such as satellite communication, navigation, and Earth observation. Considering the demand for ground coverage by satellite payloads, this paper proposes a fast coverage analysis method with the constraints of the ground elevation angle. The view element equation of the ground elevation angle is established, and the analytical solution expression for the equation is derived. The trajectory intersection method is used to quickly solve for the visible window of the ground elevation field of view to the satellite, namely, the time interval during which the satellite satisfies the ground elevation constraints. Subsequently, an adaptive search method is designed to rapidly determine the visible window. Through simulation experiments, it can be found that the calculation error of the visible window with the proposed method is on the order of 0.01 s and the computational efficiency is improved by 89.7% as compared to traditional numerical methods, verifying the effectiveness and efficiency of the proposed model and method.

参考文献

1 李夏苗, 陈新江, 伍国华, 等. 考虑断点续传的中继卫星调度模型及启发式算法[J]. 航空学报201940(11): 323233.
  LI X M, CHEN X J, WU G H, et.al. Relay satellite scheduling model and heuristic algorithm considering breakpoint continuation[J]. Acta Aeronautica et Astronautica Sinica201940(11): 323233 (in Chinese).
2 WU G, LUO Q, DU X, et al. Ensemble of metaheuristic and exact algorithm based on the divide-and-conquer framework for multi-satellite observation scheduling[J]. IEEE Transactions on Aerospace and Electronic Systems202258(5): 4396-4408.
3 GU Y, HAN C, CHEN Y, et al. Large region targets observation scheduling by multiple satellites using resampling particle swarm optimization[J]. IEEE Transactions on Aerospace and Electronic Systems202359(2): 1800-1815.
4 ORTORE E, CINELLI M, CIRCI C. A ground track-based approach to design satellite constellations[J]. Aerospace Science and Technology201769: 458-464.
5 HAN C, BAI S, ZHANG S, et al. Visibility optimization of satellite constellations using a hybrid method[J]. Acta Astronautica2019163: 250-263.
6 WANG X W, SONG G P, LEUS R, et al. Robust earth observation satellite scheduling with uncertainty of cloud coverage[J]. IEEE Transactions on Aerospace and Electronic Systems202056(3): 2450-2461.
7 HAN C, GU Y, WU G H, et al. Simulated annealing-based heuristic for multiple agile satellites scheduling under cloud coverage uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202353(5): 2863-2874.
8 孙刚, 彭双, 陈浩, 等. 面向测控数传资源一体化场景的卫星地面站资源多目标优化方法[J]. 航空学报202243(9): 326114.
  SUN G, PENG S, CHEN H, et.al. A multi-objective optimization method of satellite ground station resources for the integration scenario of TTC, data and transmission resources[J]. Acta Aeronautica et Astronautica Sinica202243 (9): 326114 (in Chinese).
9 ULYBYSHEV Y. Satellite constellation design for complex coverage[J]. Journal of Spacecraft and Rockets200845(4): 843-849.
10 伍国华, 王天宇. 基于自适应模拟退火的大规模星座测控资源调度算法[J]. 航空学报202344(12): 327759.
  WU G H, WANG T Y. Large-scale constellation TT & C resource scheduling algorithm based on adaptive simulated annealing[J]. Acta Aeronautica et Astronautica Sinica202344(12): 327759 (in Chinese).
11 ZHANG J R, CAI Y F, XUE C B, et al. LEO mega constellations: Review of development, impact, surveillance, and governance[J]. Space: Science and Technology20222022: 9865174.
12 MORRISON JJ. A system of sixteen synchronous satellites for worldwide navigation and surveillance[R]. Washington, D.C.: Federal Aviation Administration, 1973.
13 SONG Z M, DAI G M, WANG M C, et al. A novel grid point approach for efficiently solving the constellation-to-ground regional coverage problem[J]. IEEE Access20186: 44445-44458.
14 ALFANO S, NEGRON JR D, MOORE JL. Rapid determination of satellite visibility periods[R]. Air Force Academy Colorado Springs Co, 1992.
15 HAN C, GAO X J, SUN X C. Rapid satellite-to-site visibility determination based on self-adaptive interpolation technique[J]. Science China Technological Sciences201760(2): 264-270.
16 GU Y, HAN C, WANG X W. A Kriging based framework for rapid satellite-to-site visibility determination[C]?∥ 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2019: 262-267.
17 ULYBYSHEV Y. Geometric analysis and design method for discontinuous coverage satellite constellations[J]. Journal of Guidance, Control, and Dynamics199936(1): 92-99.
18 ULYBYSHEV Y. General analysis method for discontinuous coverage satellite constellations[J]. Journal of Guidance, Control, and Dynamics201538(12): 2475-2483.
19 DAI G M, CHEN X Y, WANG M C, et al. Analysis of satellite constellations for the continuous coverage of ground regions[J]. Journal of Spacecraft and Rockets201754(6): 1294-1303.
20 HAN C, ZHANG Y J, BAI S Z. Geometric analysis of ground-target coverage from a satellite by field-mapping method[J]. Journal of Guidance, Control, and Dynamics202144(8): 1469-1480.
21 ZHANG Y J, HAN C, SUN W, et al. Geometric-based method for regional-target coverage analysis[J]. IEEE Transactions on Aerospace and Electronic Systems202359(3): 2252-2265.
22 ZHANG Y J, BAI S Z, HAN C. Geometric analysis of a constellation with a ground target[J]. Acta Astronautica2022191: 510-521.
23 WANG B D, WANG H, JIN Z H. An efficient algorithm for infrared earth sensor with a large field of view[J]. Sensors202222(23): 9409.
24 DENG H J, WANG H, LIU Y, et al. Large field-of-view infrared horizon sensor attitude correction for earth’s oblateness[J]. Journal of Guidance Control Dynamics202346(10): 2024-2032.
25 WANG X W, GU Y, WU G H, et al. Robust scheduling for multiple agile Earth observation satellites under cloud coverage uncertainty[J]. Computers & Industrial Engineering2021156: 107292.
26 LEE J W, LEE J W, KIM T W, et al. Satellite over satellite (SOS) network: A novel concept of hierarchical architecture and routing in satellite network[C]∥ Proceedings 25th Annual IEEE Conference on Local Computer Networks. Piscataway: IEEE Press, 2000: 392-399.
27 SHARMA S K, CHATZINOTAS S, OTTERSTEN B. Satellite cognitive communications: interference modeling and techniques selection[C]?∥ 2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC). Piscataway: IEEE Press, 2012: 111-118.
28 CAKAJ S, KAMO B, LALA A, et al. The coverage analysis for low earth orbiting satellites at low elevation[J]. International Journal of Advanced Computer Science and Applications20145(6): 1-5.
29 CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences2020117: 100619.
30 TEUNISSEN P J G, ODOLINSKI R, ODIJK D. Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles[J]. Journal of Geodesy201488(4): 335-350.
文章导航

/