满意度驱动下无人机移动边缘计算服务缓存和资源分配方法
收稿日期: 2023-12-25
修回日期: 2024-03-04
录用日期: 2024-05-06
网络出版日期: 2024-05-27
基金资助
江苏省自然科学基金(BK20211227);国家自然科学基金(61871400);国家人才项目(2022-JCJQ-ZQ-01);军队高层次人才创新工程(KYZYJQJY2101)
Satisfaction-driven services caching and resource allocation for UAV mobile edge computing
Received date: 2023-12-25
Revised date: 2024-03-04
Accepted date: 2024-05-06
Online published: 2024-05-27
Supported by
Natural Science Foundation of Jiangsu Province(BK20211227);National Natural Science Foundation of China(61871400);National Talent Project(2022-JCJQ-ZQ-01);Military High-level Personnel Innovation Project(KYZYJQJY2101)
随着物联网的蓬勃发展,无人机移动边缘计算作为一种新兴的计算范式,将密集型任务卸载到网络边缘服务器上,从而提高用户数据处理能力。该文针对用户任务类型多样化和不同优先级的需求,设计一种量子遗传和凸优化相结合的服务缓存和资源分配算法。在考虑到存储、计算和能耗约束下,通过联合优化服务缓存、用户卸载策略、时隙划分、计算资源分配和飞行轨迹实现用户满意度最大和服务缓存最小化。具体而言,将原问题分解为3个子问题。首先,基于量子遗传算法求解服务缓存和用户卸载子问题;其次,基于拉格朗日对偶函数得到计算资源分配闭式解;而后,利用逐次凸逼近技术求解时隙划分和无人机轨迹优化子问题;最后,将3个子问题多次迭代获得最优解。仿真结果表明该算法能很好的满足用户多样化需求还兼顾较低的服务缓存。
李伟 , 郭艳 , 何明 , 袁昊 , 赖雪斌 . 满意度驱动下无人机移动边缘计算服务缓存和资源分配方法[J]. 航空学报, 2024 , 45(19) : 330017 -330017 . DOI: 10.7527/S1000-6893.2024.30017
With the booming development of the Internet of Things, mobile edge computing of UAVs, as an emerging computing paradigm, offloads intensive tasks to network edge servers, thereby improving user data processing capacity. This paper designs a service caching and resource allocation algorithm that combines the quantum genetic algorithm and the traditional algorithm to address the needs of diversified and different prioritized user application services. Taking into account storage, computation, and energy constraints, the maximum user satisfaction and minimum service placement cost are achieved by jointly optimizing service caching, user offloading policy, time slot allocation, computational resource allocation, and flight trajectory. Specifically, the original problem is decomposed into three subproblems. First, the subproblem of service caching and user offloading is solved based on the quantum genetic algorithm. Second, the closed-form optimal solution for computational resource allocation is obtained based on the Lagrangian duality function. Then, the subproblem of time slot allocation and UAV trajectory optimization is solved using the successive convex approximation technique. Finally, the three subproblems are iterated several times to obtain their optimal solutions. The simulation results show that the algorithm can satisfy the diversified needs of users well, and can also have low services caching.
1 | LI B, HE Q, CUI G M, et al. READ: Robustness-oriented edge application deployment in edge computing environment[J]. IEEE Transactions on Services Computing, 2022, 15(3): 1746-1759. |
2 | XIA X Y, CHEN F F, HE Q, et al. Cost-effective app data distribution in edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(1): 31-44. |
3 | HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing—A key technology towards 5G[J]. ETSI white paper, 2015, 11(11): 1-16. |
4 | SABELLA D, MOUSTAFA H, KUURE P,et al. Toward fully connected vehicles: Edge computing for advanced automotive communications[M]. 5G Automotive Association White Paper,2017: 3-6. |
5 | CHEN Q, ZHU H, YANG L, et al. Edge computing assisted autonomous flight for UAV: Synergies between vision and communications[J]. IEEE Communications Magazine, 2021, 59(1): 28-33. |
6 | YANG G, LIANG Y C, ZHANG R, et al. Modulation in the air: Backscatter communication over ambient OFDM carrier[J]. IEEE Transactions on Communications, 2018, 66(3): 1219-1233. |
7 | XU X B, ZHAO H, YAO H P, et al. A blockchain-enabled energy-efficient data collection system for UAV-assisted IoT[J]. IEEE Internet of Things Journal, 2021, 8(4): 2431-2443. |
8 | MOTLAGH N H, BAGAA M, TALEB T. UAV-based IoT platform: A crowd surveillance use case[J]. IEEE Communications Magazine, 2017, 55(2): 128-134. |
9 | TALEB T, DUTTA S, KSENTINI A, et al. Mobile edge computing potential in making cities smarter[J]. IEEE Communications Magazine, 2017, 55(3): 38-43. |
10 | AISSIOUI A, KSENTINI A, GUEROUI A M, et al. On enabling 5G automotive systems using follow me edge-cloud concept[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5302-5316. |
11 | CHEN S T, JIAO L, LIU F M, et al. EdgeDR: An online mechanism design for demand response in edge clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(2): 343-358. |
12 | KOTA N R, NAIDU K. Minimizing energy consumption in H-NOMA based UAV-assisted MEC network[J]. IEEE Communications Letters, 2023, 27(9): 2536-2540. |
13 | LIU Y, XIE S L, ZHANG Y. Cooperative offloading and resource management for UAV-enabled mobile edge computing in power IoT system[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12229-12239. |
14 | CHEN J X, CAO X B, YANG P, et al. Deep reinforcement learning based resource allocation in multi-UAV-aided MEC networks[J]. IEEE Transactions on Communications, 2023, 71(1): 296-309. |
15 | SHNAIWER Y N, KOUZAYHA N, MASOOD M, et al. Multihop task routing in UAV-assisted mobile-edge computing IoT networks with intelligent reflective surfaces[J]. IEEE Internet of Things Journal, 2023, 10(8): 7174-7188. |
16 | QIN Z, WEI Z H, QU Y B, et al. AoI-aware scheduling for air-ground collaborative mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 2989-3005. |
17 | PERVEZ F, SULTANA A, YANG C G, et al. Energy and latency efficient joint communication and computation optimization in a multi-UAV-assisted MEC network[J]. IEEE Transactions on Wireless Communications, 2024, 23(3): 1728-1741. |
18 | QU Y B, DAI H P, WANG H C, et al. Service provisioning for UAV-enabled mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3287-3305. |
19 | HE Y J, GAN Y H, CUI H X, et al. Fairness-based 3-D multi-UAV trajectory optimization in multi-UAV-assisted MEC system[J]. IEEE Internet of Things Journal, 2023, 10(13): 11383-11395. |
20 | HAN Z H, ZHOU T, XU T H, et al. Joint user association and deployment optimization for delay-minimized UAV-aided MEC networks[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1791-1795. |
21 | SAMIR M, ASSI C, SHARAFEDDINE S, et al. Age of information aware trajectory planning of UAVs in intelligent transportation systems: A deep learning approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12382-12395. |
22 | FAN Q, ANSARI N. Cost Aware cloudlet Placement for big data processing at the edge[C]∥2017 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2017: 1-6. |
23 | HAN B, GOPALAKRISHNAN V, KATHIRVEL G, et al. On the resiliency of virtual network functions[J]. IEEE Communications Magazine, 2017, 55(7): 152-157. |
24 | POULARAKIS K, LLORCA J, TULINO A M, et al. Joint service placement and request routing in multi-cell mobile edge computing networks[C]∥IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2019: 10-18. |
25 | HUANG M T, LIANG W F, SHEN X J, et al. Reliability-aware virtualized network function services provisioning in mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2020, 19(11): 2699-2713. |
26 | DENG S G, CHEN Y S, CHEN G, et al. Incentive-driven proactive application deployment and pricing on distributed edges[J]. IEEE Transactions on Mobile Computing, 2023, 22(2): 951-967. |
27 | BAHREINI T, GROSU D. Efficient algorithms for multi-component application placement in mobile edge computing[J]. IEEE Transactions on Cloud Computing, 2022, 10(4): 2550-2563. |
28 | ZHANG Y, JIAO L, YAN J Y, et al. Dynamic service placement for virtual reality group gaming on mobile edge cloudlets[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(8): 1881-1897. |
29 | ZHANG T K, XU Y, LOO J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5505-5516. |
30 | DI RENZO M, NTONTIN K, SONG J, et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[J]. IEEE Open Journal of the Communications Society, 2955, 1: 798-807. |
31 | KILGOUR M. Book review: Marketing management: An Asian perspective[J]. Australasian Marketing Journal, 2006, 14(2): 52. |
32 | 杨磊. 服务补救中人格特质对顾客满意度之影响的实证研究[D]. 西安: 陕西师范大学, 2013: 56. |
YANG L. An empirical study on the influence of personality traits on customer satisfaction in service recovery[D]. Xi’an: Shaanxi Normal University, 2013: 56 (in Chinese). | |
33 | ZHAO L, TAN W A, LI B, et al. Joint shareability and interference for multiple edge application deployment in mobile-edge computing environment[J]. IEEE Internet of Things Journal, 2022, 9(3): 1762-1774. |
34 | YAN F L. Autonomous vehicle routing problem solution based on artificial potential field with parallel ant colony optimization (ACO) algorithm[J]. Pattern Recognition Letters, 2018, 116: 195-199. |
35 | SAMIR M, SHARAFEDDINE S, ASSI C M, et al. UAV trajectory planning for data collection from time-constrained IoT devices[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 34-46. |
36 | YANG J N, LI B, ZHUANG Z Q. Research of Quantum Genetic Algorith and its application in blind source separation[J]. Journal of Electronics (China), 2003, 20(1): 62-68. |
37 | 屈毓锛, 秦蓁, 马靖豪, 等. 面向空地协同移动边缘计算的服务布置策略[J]. 计算机学报, 2022, 45(4): 781-797. |
QU Y B, QIN Z, MA J H, et al. Service provisioning for air-ground collaborative mobile edge computing[J]. Chinese Journal of Computers, 2022, 45(4): 781-797 (in Chinese). | |
38 | YANG Z H, XU W, SHI J F, et al. Association and load optimization with user priorities in load-coupled heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 324-338. |
39 | LEE H J, PARK J, LEE S H, et al. Joint downlink cell association and bandwidth allocation with user priorities in two-tier HetNets[C]∥2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Piscataway: IEEE Press, 2020: 1-5. |
40 | WANG M L, ZHANG L, GAO P, et al. Stackelberg-game-based intelligent offloading incentive mechanism for a multi-UAV-assisted mobile-edge computing system[J]. IEEE Internet of Things Journal, 2023, 10(17): 15679-15689. |
41 | ZENG Y, ZHANG R. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747-3760. |
42 | BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. |
/
〈 |
|
〉 |