聚合-分体飞行器气动特性
收稿日期: 2024-04-24
修回日期: 2024-04-28
录用日期: 2024-05-11
网络出版日期: 2024-05-22
Aerodynamic characteristics of aggregation-separation aircraft
Received date: 2024-04-24
Revised date: 2024-04-28
Accepted date: 2024-05-11
Online published: 2024-05-22
智能集群组网是中小型无人机发展的重要方向之一。但传统的无人机集群难以兼顾长时滞空、远程运载和规模部署、快速响应的多重要求,为此,聚合-分体技术应运而生。将多架同构/异构的无人机通过翼尖连接的方式聚合成一架大展弦比飞行器,并根据任务需求自由分离和组合的聚合-分体技术,可充分结合分离集群高机动、大速度的优势和聚合整体长航时、强生存的优势,极大地增强集群无人机的使用效能。采用计算流体动力学方法,对聚合-分体飞行器的2个重要气动问题开展分析研究,一是计算了典型构型的小型无人机在聚合前后的气动力变化情况,分析了不同构型和数量的无人机聚合后的减阻效果,探讨了组合体飞行器的最佳聚合参数和聚合-分体飞行器的气动外形设计规律;二是针对翼尖对接过程中两侧机翼翼尖涡流扰动强烈、非线性强,严重影响对接分离过程中姿态控制的问题,基于3种典型的翼尖对接方式,分析了翼尖对接中翼尖涡演化和气动力扰动变化情况,探讨了最佳的对接方式和对接参数,可为聚合-分体过程中的飞行控制提供进一步支撑。
郭廷宇 , 闫溟 , 解春雷 . 聚合-分体飞行器气动特性[J]. 航空学报, 2024 , 45(S1) : 730596 -730596 . DOI: 10.7527/S1000-6893.2024.30596
Intelligent cluster networking is one of the important directions for the development of small and medium-sized unmanned aerial vehicles. However, traditional drone clusters are unable to meet the multiple requirements of long-term hovering, remote transportation, large-scale deployment, and rapid response. Therefore, wingtip-hinge aggregation-separation technology has emerged. Aggregating multiple homogeneous/heterogeneous drones into a high aspect ratio aircraft, and freely separating and combining them according to task requirements can fully consider the advantages of high maneuverability and high speed of the separated cluster, as well as the advantages of long endurance and strong survival of the aggregated whole, thus greatly enhancing the efficiency of cluster drones. This article adopts computational fluid dynamics method to analyze two important aerodynamic problems of wingtip-hinge aggregation-separation aircraft. This article first analyzes the aerodynamic changes of typical configurations of small unmanned aerial vehicles before and after aggregation, explores the drag reduction effects of different configurations and quantities of unmanned aerial vehicles after aggregation, and obtains the optimal aggregation parameters of the aggregation aircraft and the aerodynamic shape design rules of the aggregation-separation aircraft. Secondly, during the wingtip docking process, strong nonlinear vortex disturbances on both wingtips can seriously affect the attitude control of the plane. In response to this problem, the paper analyzed the evolution of wing tip vortices and aerodynamic disturbances based on three typical wing tip docking methods, and determined the optimal docking method and parameters. The study of wing tip vortex disturbance characteristics can also provide further support for flight control in the aggregation-separation process.
1 | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J].航空学报, 2020, 41(S1): 723738. |
JIA Y Y, TIAN S Y, LI Q. Rencent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738 (in Chinese). | |
2 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023723. |
WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023723 (in Chinese). | |
3 | 张旭辉, 解春雷, 刘思佳, 等. 智能变形飞行器发展需求及难点分析[J]. 航空学报, 2023, 44(21): 529302. |
ZHANG X H, XIE C L, LIU S J, et al. Development needs and difficulty analysis for smart morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529302 (in Chinese). | |
4 | 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5): 37-43. |
NIU Y F, XIAO X J, KE G Y. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Technology, 2013, 34(5): 37-43 (in Chinese). | |
5 | ANDERSON C. Dangerous experiments: Wingtip coupling at 15,000 feet[J]. Flight Journal, 2000, 5(6): 64. |
6 | NEELY R H. Flutter tests of a 1/25-scale model of the B-36J/RF-84F tip-coupled airplane configuration in the Langley 19-foot pressure tunnel: NACA-RM-SL56A25B [R]. Hampton: NASA Langley Research Center, 1955. |
7 | WRIGHT-PATTERSON A F B. United States Air Force museum guidebook[M]. Ohio: Air Force Museum Foundation, 1975. |
8 | MONTALVO C J. Meta aircraft flight dynamics and controls[D]. Atlanta: Georgia Institute of Technology, 2014. |
9 | MONTALVO C J, COSTELLO M. Meta aircraft flight dynamics[J]. Journal of Aircraft, 2015, 52(1): 107-115. |
10 | TROUB B, MONTALVO C J. Meta aircraft controllability[C]∥ AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016. |
11 | CARITHERS C, MONTALVO C J. Experimental control of two connected fixed wing aircraft[J]. Aerospace, 2018, 5(4): 113. |
12 | COBAR M, MONTALVO C J. Takeoff and landing of a wing-tip-connected meta aircraft with feedback control[J]. Journal of Aircraft, 2021, 58(4): 733-742. |
13 | K?THE A, BEHRENS A, HAMANN A. Closed-loop flight tests with an unmanned experimental multi-body aircraft[C]?∥ International Forum on Aeroelasticity and Structural Dynamics; Como, Italy. 2017:1-15. |
14 | COOPER J R, ROTHHAAR P M. Dynamics and control of In-flight wingtip docking[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2327-2337. |
15 | MENG Y, AN C, XIE C C, et al. Conceptual design and flight test of two wingtip-docked multi-body aircraft[J]. Chinese Journal of Aeronautics, 2022, 35(12): 144-155. |
16 | AN C, XIE C C, MENG Y, et al. Flight mechanical analysis and test of unmanned multi-body aircraft[C]?∥International Forum on Aerolasticity and Structural Dynamics. Savannah: IFASD, 2019. |
17 | 安朝, 霍贵玺, 孟杨, 等 .翼尖铰接组合式无人机气动建模方法及布局参数影响研究[J].航空学报, 2024, 45 (6): 629587. |
AN C, HUO G X, MENG Y, et al. Aerodynamic modeling methods and influence of layout parameters for wingtip-hinged multi-body combined UAV[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587 (in Chinese). | |
18 | 周伟, 马培洋, 郭正, 等. 基于翼尖链翼的组合固定翼无人机研究[J]. 航空学报, 2022, 43(9): 325946. |
ZHOU W, MA P Y, GUO Z, et al. Research of combined fixed-wing UAV based on wingtip chained[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325946 (in Chinese). | |
19 | BEHRENS A, GRUND T, EBERT C, et al. Investigation of the aerodynamic interaction between two wings in a parallel flight with close lateral proximity[J]. CEAS Aeronautical Journal, 2020, 11(2): 553-563. |
20 | ZHANG Q R, LIU H H T. Aerodynamics modeling and analysis of close formation flight[J]. Journal of Aircraft, 2017, 54(6): 2192-2204. |
21 | WU M J, SHI Z W, XIAO T H, et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology, 2021, 108: 106404. |
22 | 杜万闪, 周洲, 拜昱,等. 组合式飞行器多体动力学建模与飞行力学特性[J]. 兵工学报, 2023, 44(8): 2245-2262. |
DU W S, ZHOU Z, BAI Y, et al. Study on multibody dynamics modeling and flight dynamic characteristics of combined aircraft[J]. Acta Armamentarii,2023, 44(8): 2245-2262 (in Chinese). | |
23 | 郭廷宇. 单-双折叠翼变体飞行器总体设计研究[D].北京: 清华大学, 2023. |
GUO T Y. Research on the overall design of the monoplane-biplane morphing [D]. Beijig: Tinghua University, 2023 (in Chinese). | |
24 | FENG L T, GUO T, ZHU C H, et al. Control design and flight test of aerodynamics-driven monoplane-biplane morphing aircraft[J]. Journal of Guidance, Control, and Dynamics. 2023, 46(12): 2373-2387. |
25 | FENG L T, GUO T Y, ZHU C H, et al. Control of aerodynamic-driven morphing[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(1): 198-205. |
/
〈 |
|
〉 |