开式转子气动噪声风洞试验
收稿日期: 2024-03-20
修回日期: 2024-04-19
录用日期: 2024-05-15
网络出版日期: 2024-05-22
基金资助
国家重点研发计划(2020YFA0405700);国家级项目
Aerodynamic noise test of open rotor in wind tunnel
Received date: 2024-03-20
Revised date: 2024-04-19
Accepted date: 2024-05-15
Online published: 2024-05-22
Supported by
National Key R&D Program of China(2020YFA0405700);National Level Project
开式转子推进效率高,是当前航空发动机领域重要的发展方向,但开式转子气动干扰复杂,辐射的气动噪声强,致使气动噪声成为开式转子发动机研制面临的关键问题。为了评估开式转子气动噪声特性,验证开式转子气动噪声预测方法,分析开式转子气动噪声机理,利用新研制的大功率开式转子动力模拟试验装置,在5.5 m×4 m声学风洞开展了典型开式转子模型的气动噪声风洞试验研究;并建立了开式转子气动噪声的风洞试验数据处理方法,发展了开式转子气动噪声的阶次分解方法,系统分析了开式转子气动噪声特性和机理。研究结果表明:开式转子不同阶次单音的分离误差小于0.26 dB;开式转子气动噪声的线谱丰富且明显,覆盖频率范围宽,单音是开式转子最主要的噪声源;开式转子总噪声和单音主要朝90°辐射角附近传播,宽频噪声主要朝桨平面后方传播,前桨单音和后桨单音主要朝70°~110°辐射角传播。
陈正武 , 姜裕标 , 卢翔宇 , 李抢斌 . 开式转子气动噪声风洞试验[J]. 航空学报, 2025 , 46(2) : 130425 -130425 . DOI: 10.7527/S1000-6893.2024.30425
The open rotor has high propulsion efficiency and is an important development direction in the aero engine field. However, the aerodynamic interference of open rotor is complicated and the radiated aerodynamic noise is strong, making aerodynamic noise become a key problem in the development of open rotor engines. To evaluate the aerodynamic noise characteristics of the open rotor, verify the aerodynamic noise prediction method of the open rotor, and analyze the aerodynamic noise mechanism of the open rotor, the aerodynamic noise test of typical open rotor was carried out in the 5.5 m x 4 m acoustic wind tunnel by using a newly developed high-power open rotor dynamic simulation test device. The processing method of the wind tunnel test data of open rotor aerodynamic noise is established, the order decomposition method of open rotor aerodynamic noise is developed, and the characteristics and mechanism of open rotor aerodynamic noise are systematically studied. The results show that the separation error of different orders of tone for open rotor is less than 0.26 dB. The aerodynamic noise of open rotor is rich and obvious and covers a wide frequency range, with single frequency noise being the main noise source of open rotor. The total noise and single-frequency noise of the open rotor mainly propagate towards the radiation angle of 90o, the wide frequency noise mainly propagates towards the rear of the propeller plane, and the single tone of front propeller and rear propeller mainly propagate towards the radiation angle of 70°–110°.
1 | SMITH D J. The sustainable and green engine (SAGE)- Aircraft engine of the future?[J]. The International Journal of Entrepreneurship and Innovation, 2016, 17(4): 256-262. |
2 | HUGHES C, VAN ZANTE D, HEIDMANN J. Aircraft engine technology for green aviation to reduce fuel burn[C]∥ 3rd AIAA Atmospheric Space Environments Conference. Reston: AIAA, 2011. |
3 | HENDRICKS E, TONG M. Performance and weight estimates for an advanced open rotor engine[C]∥ 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
4 | HAGER R, VRABEL D. Advanced turboprop project:NASA SP-495[R]. Washington, D.C.: NASA, 1988. |
5 | 严成忠. 开式转子发动机[M]. 北京: 航空工业出版社, 2016. |
YAN C Z. Open rotor engine[M]. Beijing: Aviation Industry Press, 2016 (in Chinese). | |
6 | KHALID S A, DAVID L, STRINGFELLOW A B, et al. Open rotor engine aeroacoustic technology final report[R]. Washington,D.C.: Federal Aviation Administration, 2014. |
7 | LITTLE B, BARTEL H, REDDY N, et al. Propfan Test Assessment (PTA): Final project report: NASA-CR-185138 [R]. Washington, D. C.: NASA, 1989. |
8 | LITTLE B, BARTEL H, REDDY N, et al. Propfan test Assessment (PTA): Flight test report: NASA-CR-182278 [R]. Washington, D. C.: NASA, 1989. |
9 | NASA. Full scale technology demonstration of a modern counter rotating unducted fan engine concept: Design report: NASA CR-180867 [R]. Washington, D.C.: NASA, 1987. |
10 | NASA. Full scale technology demonstration of a modern counter rotating unducted fan engine concept: Engine test: NASA CR-180869 [R]. Washington, D.C.: NASA, 1987. |
11 | 陈博, 贺象. 国外桨扇技术发展概况[J]. 燃气涡轮试验与研究, 2020, 33(1): 54-58. |
CHEN B, HE X. Development of the propfan technology abroad[J]. Gas Turbine Experiment and Research, 2020, 33(1): 54-58 (in Chinese). | |
12 | 陈正武, 姜裕标, 赵昱, 等.对转螺旋桨气动力和气动噪声风洞试验技术[J]. 航空动力学报, 2024, 39(5):20220476. |
CHEN Z W, JIANG Y B, ZHAO Y,et al. Counter-rotating propellers aerodynamic and aerodynamic noise test technology in wind tunnel[J]. Journal of Aerospace Power, 2024, 39(5):20220476 (in Chinese) . | |
13 | 李光明, 丁钰, 陈正武,等. 对转螺旋桨流场和声场数值模拟研究[J/OL]. 航空动力学报, (2023-02-10)[2024-03-20]. . |
LI G M, DING Y, CHEN Z W. Research on flow field and sound field of propulsion counter rotating propeller[J/OL]. Journal of Aerospace Power, (2023-02-10)[2024-03-20]. (in Chinese). | |
14 | HOFF G. Experimental performance and acoustic investigation of modern, counter rotating blade concepts: NASA CR 185158 [R]. Washington,D.C.: NASA,1990. |
15 | ELLIOTT D. Initial investigation of the acoustics of a counter rotating open rotor model with historical baseline blades in a low speed wind tunnel[C]∥ 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). Reston: AIAA, 2011. |
16 | VAN ZANTE D. The NASA environmentally responsible aviation project/general electric open rotor test campaign[C]∥ 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
17 | VAN ZANTE D E, COLLIER F, ORTON A, et al. Progress in open rotor propulsors: The FAA/GE/NASA open rotor test campaign[J]. The Aeronautical Journal, 2014, 118(1208): 1181-1213. |
18 | KINGAN M, EKOULE C, PARRY A B, et al. Analysis of advanced open rotor noise measurements[C]∥ 20th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2014. |
19 | STEPHENS D B, VOLD H. Order tracking signal processing for open rotor acoustics[J]. Journal of Sound and Vibration, 2014, 333(16): 3818-3830. |
20 | PANKRATOV I, SAMOKHIN V, VLASOV E, et al. Acoustic tests of contra rotating propellers in the “Dream” project[C]∥ 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). Reston: AIAA, 2011. |
21 | MUELLER T J. Aeroacoustic measurements[M]. Berlin: Springer, 2002. |
22 | SCHLINKER R H, AMIET R K. Refraction and scattering of sound by a shear layer[C]∥ 6th Aeroacoustics Conference. Reston: AIAA, 1980. |
23 | 马大猷. 声学手册[M]. 2版. 北京: 科学出版社, 2004. |
MA D Y. Acoustic manual [M]. 2nd ed. Beijing: Science Press, 2004 (in Chinese). | |
24 | SHU W J, CHEN C C, DU L, et al. Interaction tonal noise generated by contra-rotating open rotors[J]. Chinese Journal of Aeronautics, 2023, 36(4): 134-147. |
25 | 陈剑雨, 董广明, 陈进, 等. 基于Vold-Kalman阶次提取的非平稳声源定位方法[J]. 噪声与振动控制, 2021, 41(4): 27-34. |
CHEN J Y, DONG G M, CHEN J, et al. Non-stationary sound source localization based on vold-kalman order extraction[J]. Noise and Vibration Control, 2021, 41(4): 27-34 (in Chinese). | |
26 | 冯珂, 王科盛, 宋理伟, 等. 基于阶次谱的Vold-Kalman滤波带宽优选方法[J]. 振动工程学报, 2017, 30(2): 319-324. |
FENG K, WANG K S, SONG L W, et al. An order spectrum based selection method to Vold-Kalman filter bandwidth[J]. Journal of Vibration Engineering, 2017, 30(2): 319-324 (in Chinese). |
/
〈 |
|
〉 |