航空发动机气动热不确定性专栏

考虑偏峰统计特征的压气机叶栅前缘半径加工误差不确定性量化

  • 但玥 ,
  • 高丽敏 ,
  • 余华蔚 ,
  • 李瑞宇 ,
  • 罗秋生 ,
  • 郝玉扬
展开
  • 1.西北工业大学 动力与能源学院,西安 710072
    2.太行实验室,成都 610000
    3.西安交通大学 航天航空学院,西安 710049
    4.中国航发四川燃气涡轮研究院,成都 610500
.E-mail: gaolm@nwpu.edu.cn

收稿日期: 2024-03-11

  修回日期: 2024-04-07

  录用日期: 2024-05-10

  网络出版日期: 2024-05-22

基金资助

国家自然科学基金(U2241249)

Uncertainty quantification of leading-edge radius machining error of compressor cascade considering statistical characteristics of skewness and kurtosis

  • Yue DAN ,
  • Limin GAO ,
  • Huawei YU ,
  • Ruiyu LI ,
  • Qiusheng LUO ,
  • Yuyang HAO
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
    2.Taihang Laboratory,Chengdu 610000,China
    3.School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China
    4.AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China
E-mail: gaolm@nwpu.edu.cn

Received date: 2024-03-11

  Revised date: 2024-04-07

  Accepted date: 2024-05-10

  Online published: 2024-05-22

Supported by

National Natural Science Foundation of China(U2241249)

摘要

压气机叶片加工几何不确定性问题十分突出,作为不确定性量化系统的输入,准确表达其统计分布对系统输出尤为重要。首先,针对某100个压气机转子叶片同一叶高截面前缘半径误差,进行统计分析发现其分布呈现左偏特征,且为尖峰态,非正态性显著;其次,为补充正态分布的局限性,使用条件期望最大化的方法获得具有偏峰特征的误差分布,并与正态分布对比发现偏峰分布拟合程度更佳;再次,将服从2种分布的前缘半径误差分别作为不确定性量化输入,以叶栅总压损失系数和静压比作为响应,对比量化结果发现,不同分布对应的总压损失系数和静压比均值的差异不到1%,可考虑忽略,而分散度差异显著,且总压损失系数分散度变化量较静压比更大,最大约20%;最后,若以正态分布作为输入,会显著高估前缘半径误差不确定性对叶栅气动性能分散度的影响与性能变化范围,而低估性能恶化的可能性。研究说明了“考虑加工误差偏峰特征”的必要性,以期对叶片精细化加工提供更准确的参考。

本文引用格式

但玥 , 高丽敏 , 余华蔚 , 李瑞宇 , 罗秋生 , 郝玉扬 . 考虑偏峰统计特征的压气机叶栅前缘半径加工误差不确定性量化[J]. 航空学报, 2024 , 45(19) : 630366 -630366 . DOI: 10.7527/S1000-6893.2024.30366

Abstract

The issue of geometric uncertainty of compressor blade machining is very prominent. As the input of the uncertainty quantification system, the accurate expression of its statistical distribution is particularly important for the system output. According to the statistical analysis of leading-edge radius errors at the same blade height section of 100 compressor rotor blades, it is found that the distribution is left-skewed and in a peak condition, with significant non-normality. Then, to overcome the limitations of the normal distribution, the expectation conditional maximization either method is used to obtain the error distribution with skewness and kurtosis, which fits the error data better than the normal distribution. Finally, the leading-edge radius error fitting the two distributions are used as the uncertainty quantification input separately, and the total pressure loss coefficient and static pressure ratio of the cascade are used as the response. Comparison of the quantification results shows that the total pressure loss coefficient and static pressure ratio mean variable values,the mean variable values of the total pressure loss coefficient and static pressure ratio corresponding to different statistical distribution are less than 1%, which can be negligible, while the scatter difference is significant. Besides, the variation of the total pressure loss coefficient is larger than that of the static pressure ratio, about 20% at most. In addition, if the normal distribution is input, the influence of the uncertainty of the leading-edge radius error on the scatter of the cascade aerodynamic performance and the performance variation range are significantly overestimated, while the possibility of performance deterioration is underestimated. This research illustrates the necessity of considering skewness and kurtosis characteristics of machining errors to provide more accurate reference for blade fine machining.

参考文献

1 陈懋章, 刘宝杰. 风扇/压气机气动设计技术发展趋势——用于大型客机的大涵道比涡扇发动机[J]. 航空动力学报200823(6): 961-975.
  CHEN M Z, LIU B J. Fan/compressor aero design trend and challenge on the development of high bypass ratio turbofan[J]. Journal of Aerospace Power200823(6): 961-975 (in Chinese).
2 MANSOUR G. A developed algorithm for simulation of blades to reduce the measurement points and time on coordinate measuring machine (CMM)[J]. Measurement201454: 51-57.
3 BOLOTOV M A, PECHENIN V A, RUZANOV N V. Uncertainties in measuring the compressor-blade profile in a gas-turbine engine[J]. Russian Engineering Research201636(12): 1058-1065.
4 LIU C Q, LI Y G, SHEN W M. A real time machining error compensation method based on dynamic features for cutting force induced elastic deformation in flank milling[J]. Machining Science and Technology201822(5): 766-786.
5 HOU Y H, ZHANG D H, MEI J W, et al. Geometric modelling of thin-walled blade based on compensation method of machining error and design intent[J]. Journal of Manufacturing Processes201944: 327-336.
6 GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery2003125(4): 692-703.
7 MANOHARA SELVAN K, KOWALCZYK L. Exploring the impact of manufacturing geometric uncertainties on the aerodynamic performance of a small scale compressor[R]. New York: ASME, 2018.
8 罗佳奇, 陈泽帅, 曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报202041(10): 123826.
  LUO J Q, CHEN Z S, ZENG X. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica202041(10): 123826 (in Chinese).
9 李玉, 楚武利, 姬田园. 叶片安装角偏差对动叶性能影响的不确定性研究[J]. 西安交通大学学报202357(4): 49-59.
  LI Y, CHU W L, JI T Y. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University202357(4): 49-59 (in Chinese).
10 蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报201738(3): 490-497.
  CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics201738(3): 490-497 (in Chinese).
11 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报202142(2): 342-358.
  LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica202142(2): 342-358 (in Chinese).
12 罗佳奇, 陈泽帅, 邹正平, 等. 低压涡轮铸造叶片几何不确定性统计[J]. 航空学报202344(6): 305-320.
  LUO J Q, CHEN Z S, ZOU Z P, et al. Statistics on geometric uncertainties of casting blades in low-pressure turbines[J]. Acta Aeronautica et Astronautica Sinica202344(6): 305-320 (in Chinese).
13 WANG X J, DU P C, YAO L C, et al. Uncertainty analysis of measured geometric variations in turbine blades and impact on aerodynamic performance[J]. Chinese Journal of Aeronautics202336(6): 140-160.
14 李志国, 彭宇轩, 秦川, 等. 大跨曲面屋盖脉动风荷载非高斯分布特性试验研究[J]. 工业建筑202151(7): 84-89.
  LI Z G, PENG Y X, QIN C, et al. Experimental study on non-gaussian distribution characteristics on fluctuating wind loads on a long-span curved roof[J]. Industrial Construction202151(7): 84-89 (in Chinese).
15 SANDERS J L, EVANS N W. Near-Gaussian distributions for modelling discrete stellar velocity data with heteroskedastic uncertainties[J]. Monthly Notices of the Royal Astronomical Society2020499(4): 5806-5825.
16 TIAN Z X, LI B. Threshold speed of short journal bearings considering the non-Gaussian longitudinal surface roughness[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology2022236(11): 2138-2145.
17 JONDEAU E, ROCKINGER M. Gram-Charlier densities[J]. Journal of Economic Dynamics and Control200125(10): 1457-1483.
18 TAMANDI M, JAMALIZADEH A. Finite mixture modeling using shape mixtures of the skew scale mixtures of normal distributions[J]. Communications in Statistics-Simulation and Computation202049(12): 3345-3366.
19 LIU C H, RUBIN D B. The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence[J]. Biometrika199481(4): 633-648.
20 MA C, GAO L M, WANG H H, et al. Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades[J]. Chinese Journal of Aeronautics202134(6): 220-232.
21 高丽敏, 王浩浩, 杨光, 等. 关于叶片前缘加工缺陷及气动合格性的探讨[J]. 推进技术202344(1): 76-85.
  GAO L M, WANG H H, YANG G, et al. Discussion on machining defects of blade leading edge and aerodynamic qualification[J]. Journal of Propulsion Technology202344(1): 76-85 (in Chinese).
22 庄皓琬, 滕金芳, 朱铭敏, 等. 考虑加工公差的叶片对压气机气动性能的影响[J]. 上海交通大学学报202054(9): 935-942.
  ZHUANG H W, TENG J F, ZHU M M, et al. Impacts of blades considering manufacturing tolerances on aerodynamic performance of compressor[J]. Journal of Shanghai Jiao Tong University202054(9): 935-942 (in Chinese).
23 师义民, 徐伟, 秦超英, 等. 数理统计[M]. 北京: 科学出版社, 2015.
  SHI Y M, XU W, QIN C Y, et al. Mathematical statistics[M]. Beijing: Science Press, 2015 (in Chinese).
24 马驰. 不确定性量化方法研究及压气机多源不确定性气动性能预测[D]. 西安: 西北工业大学, 2022.
  MA C. Research on uncertainty quantification method and prediction of the aerodynamic performance of compressors caused by multisource uncertainties[D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese).
25 WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using gram-schmidt polynomial chaos: AIAA-2006-0896[R]. Reston: AIAA, 2006.
26 WANG H H, GAO L M, YANG G, et al. A data-driven robust design optimization method and its application in compressor blade[J]. Physics of Fluids202335(6): 066114.
文章导航

/