电子电气工程与控制

定向能载荷约束下面对称飞行器定向定姿制导技术

  • 白璐 ,
  • 林德福 ,
  • 郑多 ,
  • 尉明军
展开
  • 1.北京理工大学 宇航学院,北京 100081
    2.北京机电工程研究所 复杂系统控制与智能协同技术重点实验室,北京 100074
.E-mail: zhengduohello@126.com

收稿日期: 2024-01-19

  修回日期: 2024-03-21

  录用日期: 2024-05-06

  网络出版日期: 2024-05-22

基金资助

国家自然科学基金青年基金(61903350);教育部产学研创新项目(2021ZYA02002);北京理工大学青年教师学术启动计划(3010011182130)

Guidance technology of specified direction and attitude for plane symmetrical aircraft with directed energy load constraint

  • Lu BAI ,
  • Defu LIN ,
  • Duo ZHENG ,
  • Mingjun WEI
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory,Beijing Electro-mechanical Engineering Institute,Beijing 100074,China

Received date: 2024-01-19

  Revised date: 2024-03-21

  Accepted date: 2024-05-06

  Online published: 2024-05-22

Supported by

National Natural Science Foundation of China(61903350);Industry-University-Research Innovation Project of Ministry of Education of China(2021ZYA02002);Beijing Institute of Technology Research Fund Program for Young Scholars(3010011182130)

摘要

机载定向能武器是未来攻防对抗中获得非对称优势的决定性因素之一。针对定向能载荷对目标有效毁伤要求下的面对称飞行器位置、航向、倾斜姿态等多约束问题,提出一种侧向加速度补偿的定向定姿多约束机动制导策略。描述了机载定向能对地面目标实施打击的任务场景,揭示了定向能载荷约束下面对称飞行器的机动规律及其对位置、航向、倾斜姿态等的约束条件;基于面对称飞行器运动学模型及其位置、定向、定姿等多约束条件,设计了“虚拟导引-定姿攻击”的机动制导策略,协调各约束施加的时间和条件,避免了过约束可能导致的指令解算困难问题。分析了各约束条件之间的耦合关联特性,提出了虚拟导引定向制导机制,引导飞行器沿指定航向飞向目标;在此基础上,提出了基于侧向加速度补偿的定向定姿机动策略,主动产生侧向加速度以实现飞行器动态平衡,保证面对称飞行器能够同时满足并维持定向能载荷正常工作所需要的航向和倾斜角约束,确保定向能载荷拥有充足的照射时间。仿真结果表明,研究提出的基于侧向加速度补偿的机动制导策略,能够满足定向能载荷约束下面对称飞行器的定向定姿制导任务要求,对支撑机载定向能武器的实际运用具有一定的参考价值。

本文引用格式

白璐 , 林德福 , 郑多 , 尉明军 . 定向能载荷约束下面对称飞行器定向定姿制导技术[J]. 航空学报, 2024 , 45(22) : 330196 -330196 . DOI: 10.7527/S1000-6893.2024.30196

Abstract

Airborne directed energy weapons are one of the decisive factors to gain asymmetric advantages in future offensive and defensive confrontations. To address the problem of multiple constraints of the position, flight direction and bank attitude of the plane symmetrical aircraft under the requirement of effective damage to the target caused by directed energy load, a multiple constraint maneuvering guidance strategy with specified direction and attitude is proposed based on lateral acceleration compensation. The mission scenario of airborne directed energy loads attacking ground targets is described, and the maneuvering laws as well as constraints of position, flight direction and bank attitude of the plane symmetrical aircraft restricted by directed energy load are revealed. Based on the kinematic model and the multiple constraints such as position, specified direction and attitude of plane symmetrical aircrafts, the maneuvering guidance strategy of “virtual guidance- specified attitude attack” is designed to coordinate the imposed time and conditions of each constraint, which helps avoid the problem of command solution difficulty caused by excessive constraints. The coupling correlation characteristics existing in all constraints are analyzed, and a specified direction virtual guidance mechanism is proposed to guide the aircraft to the target on the specified course. On this basis, a specified direction and attitude maneuvering strategy with lateral acceleration compensation is proposed to actively generate the lateral acceleration for realizing dynamic balance of the aircraft, which can ensure that the plane symmetrical aircraft can simultaneously satisfy and maintain the heading angle as well as the bank angle constraints required for the normal operation of the directed energy load, and the directed energy load has sufficient irradiation time. The simulation results indicate that the proposed maneuvering guidance strategy based on lateral acceleration compensation can meet the requirements of the guidance mission with specified direction and attitude of the plane symmetrical aircraft restricted by directed energy load, and can provide certain reference for supporting the practical application of airborne directed energy weapons.

参考文献

1 全军军事术语管理委员会, 空军军事术语管理委员会.中国人民解放军空军军语[M]. 西安:蓝天出版社,2012: 368.
  Army Military Terminology Management Committee, Air Force Military Terminology Management Committee. Chinese people’s liberation army air force military language[M]. Xi’an: Blue Sky Press, 2012: 368 (in Chinese).
2 周新人, 卢盈齐, 刘学亮, 等. 国外定向能防空武器抗击无人机蜂群研究现状分析及思考[J]. 飞航导弹2021(7): 91-95.
  ZHOU X R, LU Y Q, LIU X L, et al. Analysis and thinking on the research status of directed energy air defense weapons against drone bee colony abroad[J]. Aerodynamic Missile Journal2021(7): 91-95 (in Chinese).
3 刘伟, 张琳, 王代强, 等. 激光武器反无人机集群作战运用及关键技术[J]. 航空学报202445(12): 329457.
  LIU W, ZHANG L, WANG D Q, et al. Application and key technologies of laser weapons in anti-UAV swarm operations[J]. Acta Aeronautica et Astronautica Sinica202445(12): 329457 (in Chinese).
4 宁国栋. 应对未来战争的精确打击武器发展趋势研究[J]. 战术导弹技术2019(1): 1-9.
  NING G D. Trend analysis of precision strike weapon development in future warfare[J]. Tactical Missile Technology2019(1): 1-9 (in Chinese).
5 赵鸿燕. 国外高功率微波武器发展研究[J]. 航空兵器201825(5): 21-28.
  ZHAO H Y. Research on overseas high power microwave weapon development[J]. Aero Weaponry201825(5): 21-28 (in Chinese).
6 US air force seeks laser, microwave weapons for aircraft [EB/OL]. (2018-11-01) [2024-5-20]. .
7 刘希鹏. 打击静态目标面对称巡航导弹飞行的多维泰勒网优化控制[D]. 南京: 东南大学, 2017: 1.
  LIU X P. Multi-dimensional Taylor net optimal control of symmetrical cruise missile flying against static target[D].Nanjing: Southeast University, 2017: 1 (in Chinese).
8 邱文杰. 有动力滑翔飞行器轨迹优化与制导技术研究[D]. 北京: 北京理工大学, 2017: 1-3.
  QIU W J. Research on trajectory optimization and guidance technology of powered gliding vehicle[D].Beijing: Beijing Institute of Technology, 2017: 1-3 (in Chinese).
9 陈海青, 汪刘应, 刘顾. 国外飞航导弹发展现状及启示[J]. 飞航导弹2019(10): 31-35.
  CHEN H Q, WANG L Y, LIU G. Development status and enlightenment of foreign cruise missiles[J]. Aerodynamic Missile Journal2019(10): 31-35 (in Chinese).
10 徐晨阳, 刘克检. 机载激光武器未来发展分析[J]. 飞航导弹2021(4): 27-32.
  XU C Y, LIU K J. Analysis of future development of airborne laser weapons[J]. Aerodynamic Missile Journal2021(4): 27-32 (in Chinese).
11 ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012.
12 HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics201841(7): 1624-1633.
13 权申明, 陈雪野, 晁涛, 等. 带落角落速约束的导弹虚拟期望落角末制导律[J]. 宇航学报202243(8): 1070-1079.
  QUAN S M, CHEN X Y, CHAO T, et al. Terminal guidance law for missile with speed and angle constraints considering virtual expected impact angle[J]. Journal of Astronautics202243(8): 1070-1079 (in Chinese).
14 DOU L, DOU J. The design of optimal guidance law with multi-constraints using block pulse functions[J]. Aerospace Science and Technology201223(1): 201-205.
15 DUVVURU R, MAITY A, UMAKANT J. Three-dimensional field of view and impact angle constrained guidance with terminal speed maximization[J]. Aerospace Science and Technology2022126: 107552.
16 ULYBYSHEV Y. Terminal guidance law based on proportional navigation[J]. Journal of Guidance, Control, and Dynamics200528(4): 821-824.
17 LU P, DOMAN D B, SCHIERMAN J D. Adaptive terminal guidance for hypervelocity impact in specified direction[J]. Journal of Guidance, Control, and Dynamics200629(2): 269-278.
18 RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics200831(6): 1817-1822.
19 RATNOO A, GHOSE D. Satisfying terminal angular constraint using proportional navigation:AIAA-2009-6088[R]. Reston: AIAA, 2009.
20 RATNOO A, GHOSE D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics201033(1): 269-275.
21 高峰, 唐胜景, 师娇, 等. 一种基于落角约束的偏置比例导引律[J]. 北京理工大学学报201434(3): 277-282.
  GAO F, TANG S J, SHI J, et al. A bias proportional navigation guidance law based on terminal impact angle constraint[J]. Transactions of Beijing Institute of Technology201434(3): 277-282 (in Chinese).
22 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报202041(S2): 724277.
  LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724277 (in Chinese).
23 孙国鑫, 夏群利, 张道驰, 等. 可重复使用运载器自动着陆分段制导策略[J]. 系统工程与电子技术201941(4): 856-862.
  SUN G X, XIA Q L, ZHANG D C, et al. Piecewise guidance strategy of auto-landing for reusable launch vehicle[J]. Systems Engineering and Electronics201941(4): 856-862 (in Chinese).
24 王晓海, 孟秀云, 周峰, 等. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术202143(5): 1295-1302.
  WANG X H, MENG X Y, ZHOU F, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics202143(5): 1295-1302 (in Chinese).
25 LI Z B, ZHANG X Y, ZHANG H R, et al. Three-dimensional approximate cooperative integrated guidance and control with fixed-impact time and azimuth constraints[J]. Aerospace Science and Technology2023142: 108617.
26 HARL N, BALAKRISHNAN S N. Reentry terminal guidance through sliding mode control[J]. Journal of Guidance, Control, and Dynamics201033(1): 186-199.
27 LIU X D, ZHANG F D, LI Z, et al. Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique[J]. Chinese Journal of Aeronautics201730(4): 1582-1591.
28 VITIELLO A, LEONARDI E M, PONTANI M. Multiple-sliding-surface guidance and control for terminal atmospheric reentry and precise landing[J]. Journal of Spacecraft and Rockets202360(3): 912-923.
29 ZHANG Z H, MA K M, ZHANG G P, et al. Virtual target approach-based optimal guidance law with both impact time and terminal angle constraints[J]. Nonlinear Dynamics2022107(4): 3521-3541.
30 HOU L B, ZHU J H, KUANG M C, et al. Impact angle control guidance to intercept moving targets by virtual target technique[J]. International Journal of Aerospace Engineering20212021: 7210808.
31 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2020: 48-144.
  QIAN X F, LIN R X, ZHAO Y N. Missile flight mechan-ics[M]. Beijing: Beijing Institute of Technology Press, 2020: 48-144 (in Chinese).
文章导航

/