电子电气工程与控制

基于学习的高超声速飞行器分层协调容错方法

  • 武天才 ,
  • 王宏伦 ,
  • 任斌 ,
  • 严国乘 ,
  • 吴星雨
展开
  • 1.北京航空航天大学 自动化科学与电气工程学院,北京 100191
    2.北京航空航天大学 飞行器控制一体化技术重点实验室,北京 100191
    3.浙江大学 城市学院 滨江创新中心,杭州 310056
.E-mail: wang_hl_12@126.com

收稿日期: 2024-01-19

  修回日期: 2024-02-27

  录用日期: 2024-05-13

  网络出版日期: 2024-05-15

基金资助

国家自然科学基金(62173022);航空科学基金(2018ZC51031);北京航空航天大学沈元学院卓越研究基金(230121205)

Learning-based hierarchical coordination fault-tolerant method for hypersonic vehicles

  • Tiancai WU ,
  • Honglun WANG ,
  • Bin REN ,
  • Guocheng YAN ,
  • Xingyu WU
Expand
  • 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    2.The Science and Technology on Aircraft Control Laboratory,Beihang University,Beijing 100191,China
    3.Hangzhou City University Binjiang Innovation Center,City College,Zhejiang University,Hangzhou 310056,China
E-mail: wang_hl_12@126.com

Received date: 2024-01-19

  Revised date: 2024-02-27

  Accepted date: 2024-05-13

  Online published: 2024-05-15

Supported by

National Natural Science Foundation of China(62173022);Aeronautical Science Foundation of China(2018ZC51031);Outstanding Research Project of Shen Yuan Honors College, BUAA(230121205)

摘要

为系统提升高超声速飞行器在不同严重程度的执行机构故障情况下的容错能力和任务完成度,提出一种基于深度学习的飞行器分层协调容错方法。首先,为实现执行机构故障严重程度的在线量化分析,提出了基于深度神经网络的飞行器可配平能力预示方法和可达区域边界预示方法;接着,以上述2种预示方法为“纽带”,构建分层协调容错的总体框架——根据预示结果在线判断当前执行机构故障的严重程度,并针对性地协调控制层、制导层和规划层的容错机制,来尽可能弥补执行机构故障对飞行性能和任务完成能力的影响;最后,在3种不同严重程度的故障情况下进行仿真来验证所提方法的有效性。

本文引用格式

武天才 , 王宏伦 , 任斌 , 严国乘 , 吴星雨 . 基于学习的高超声速飞行器分层协调容错方法[J]. 航空学报, 2024 , 45(22) : 330191 -330191 . DOI: 10.7527/S1000-6893.2024.30191

Abstract

To enhance fault-tolerance capability and mission completion ability of hypersonic vehicles under various severity levels of actuator faults, this paper proposes a learning-based hierarchical coordination fault-tolerant method for hypersonic vehicles. Firstly, to achieve online quantitative analysis of the severity of actuator faults, deep neural network-based approaches for predicting vehicle trim capability and reachable region boundaries are proposed. Subsequently, using the above prediction methods as “bridges”, a hierarchical coordinated fault-tolerance framework is constructed. The method assesses the severity of current actuator faults in real-time based on prediction results, then selectively coordinates fault-tolerant mechanisms at the control, guidance, and planning layers to mitigate the impact of actuator faults on flight performance and mission completion capability as much as possible. Finally, simulations under three different severity levels of actuator faults are conducted to validate the effectiveness of the proposed fault-tolerant method.

参考文献

1 DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics202235(7): 1-18.
2 姜雨石. 高超声速飞行器再入故障诊断及容错控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
  JIANG Y S. Research on reentry fault diagnosis and fault-tolerant control method of hypersonic vehicle[D].Harbin: Harbin Institute of Technology, 2021 (in Chinese).
3 WU T C, WANG H L, YU Y, et al. Quantized fixed-time fault-tolerant attitude control for hypersonic reentry vehicles[J]. Applied Mathematical Modelling202198: 143-160.
4 AN H, LIU J X, WANG C H, et al. Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle[J]. IEEE/ASME Transactions on Mechatronics201621(3): 1680-1691.
5 LI P, YU X, ZHANG Y M, et al. Adaptive multivariable integral TSMC of a hypersonic gliding vehicle with actuator faults and model uncertainties[J]. IEEE/ASME Transactions on Mechatronics201722(6): 2723-2735.
6 YU X, LI P, ZHANG Y M. Fixed-time actuator fault accommodation applied to hypersonic gliding vehicles[J]. IEEE Transactions on Automation Science and Engineering202118(3): 1429-1440.
7 HU Q L, WANG C L, LI Y, et al. Adaptive control for hypersonic vehicles with time-varying faults[J]. IEEE Transactions on Aerospace and Electronic Systems201854(3): 1442-1455.
8 XU B, SHI Z K, SUN F C, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults[J]. IEEE Transactions on Cybernetics201949(3): 1047-1057.
9 WU T C, WANG H L, YU Y, et al. Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J]. Aerospace Science and Technology2021119: 107134.
10 OPPENHEIMER M, DOMAN D, BOLENDER M. A method for estimating control failure effects for aerodynamic vehicle trajectory retargeting: AIAA-2004-5169[R]. Reston: AIAA, 2004.
11 SHAFFER P J, ROSS I M, OPPENHEIMER M W, et al. Optimal trajectory reconfiguration and retargeting for reusable launch vehicles[J]. Journal of Guidance, Control, and Dynamics200730(6): 1794-1802.
12 余跃, 王宏伦. 基于深度学习的高超声速飞行器再人预测校正容错制导[J]. 兵工学报202041(4): 656-669.
  YU Y, WANG H L. Deep learning-based reentry predictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii202041(4): 656-669 (in Chinese).
13 LV X H, JIANG B, QI R Y, et al. Survey on nonlinear reconfigurable flight control[J]. Journal of Systems Engineering and Electronics201324(6): 971-983.
14 钱佳淞, 齐瑞云, 姜斌. 高超声速飞行器再入容错制导技术综述[J]. 飞行力学201533(05): 390-394.
  QIAN J S, QI R Y, JIANG B. Review of reentry fault-tolerant guidance technology on hypersonic vehicles[J]. Flight Dynamics201533(05): 390-394 (in Chinese).
15 YU X, ZHOU S C, GUO K X, et al. Integrated reconfiguration mechanism for quadrotors with capability analysis against rotor failure[J]. Journal of Guidance, Control, and Dynamics202246(2): 401-409.
16 SCHIERMAN J D, WARD D G, HULL J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results[J]. Journal of Guidance, Control, and Dynamics200427(6): 975-988.
17 郭雷, 王陈亮, 王雨, 等. 多源干扰下高超声速飞行器自主精细控制[J]. 宇航学报202344(4): 558-565.
  GUO L, WANG C L, WANG Y, et al. Autonomous refined control for hypersonic flight vehicles with multiple disturbances[J]. Journal of Astronautics202344(4): 558-565 (in Chinese).
18 YU X, FU Y, PENG X Y. Fuzzy logic aided fault-tolerant control applied to transport aircraft subject to actuator stuck failures[J]. IEEE Transactions on Fuzzy Systems201826(4): 2050-2061.
19 武天才, 王宏伦, 任斌, 等. 考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计方法[J]. 航空学报202445(15): 329607.
  WU T C, WANG H L, REN B, et al. Learning-based integrated fault-tolerant guidance and control method for hypersonic vehicles considering avoidance and penetration[J]. Acta Aeronautica et Astronautica Sinica202445(15): 329607 (in Chinese).
20 章吉力, 周大鹏, 杨大鹏, 等. 禁飞区影响下的空天飞机可达区域计算方法[J]. 航空学报202142(8): 525771.
  ZHANG J L, ZHOU D P, YANG D P, et al. Computation method for reachable domain of aerospace plane under the influence of no-fly zone[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525771 (in Chinese).
21 YU Y, WANG H L, LI N, et al. Finite-time model-assisted active disturbance rejection control with a novel parameters optimizer for hypersonic reentry vehicle subject to multiple disturbances[J]. Aerospace Science and Technology201879: 588-600.
文章导航

/