月球大椭圆太阳同步测控回归冻结轨道设计

  • 孟占峰
展开
  • 北京空间飞行器总体设计部

收稿日期: 2023-11-30

  修回日期: 2024-05-14

  网络出版日期: 2024-05-14

Design of Sun-Synchronous Repeat Tracking Condition Frozen Elliptical Lunar Orbits

  • MENG Zhan-Feng
Expand

Received date: 2023-11-30

  Revised date: 2024-05-14

  Online published: 2024-05-14

摘要

针对我国嫦娥六号月背采样返回任务中继通讯的需求,提出了一种全新的月球大椭圆太阳同步测控回归冻结轨道类型以及相应的设计方法。采用von Zeipel正则变换方法,建立了考虑地球三体引力一阶、二阶项和月球J2项的大椭圆环月轨道的平均动力学方程。基于平均动力学方程,给出了冻结轨道所需满足的条件和相应的约束方程。在冻结轨道的基础上,进一步提出了太阳同步冻结轨道的条件,揭示了其针对月背采样任务可长期稳定保持与指定采样点的光照条件的独特优点,并解决了中继卫星轨道与嫦娥六号多窗口发射匹配的难题;在近地轨道节点周期概念的基础上,提出了月球轨道的测控回归概念,并建立了相应的约束方程,实现了使命轨道周期与的测控条件重复周期共振,进而长期保持稳定的测控条件。以嫦娥六号中继使命轨道设计为背景,给出了同时满足冻结、太阳同步和测控回归三个条件的月球大椭圆中继轨道设计流程和设计结果。利用真实全摄动模型对轨道设计结果进行了仿真验证,结果表明:本文给出的中继轨道参数冻结良好,与太阳同步稳定,测控回归精度高,可以完全满足嫦娥六号月背中继任务要求。

本文引用格式

孟占峰 . 月球大椭圆太阳同步测控回归冻结轨道设计[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.29926

Abstract

In order to achieve the relay communication requirements of the Chang’E-6 lunar far side sample and return mission, a new type of sun-synchronous repeat tracking condition frozen lunar orbit and the corresponding design method are proposed. By using the von Zeipel canonical transformation method, the mean motion equations of high elliptical lunar orbits are obtained, taking into account the first and second order terms of the Earth's three-body perturbation and the J2 terms of the Moon. Based on the mean motion equation, the frozen conditions and corresponding constraint equations are established. Using the frozen condition, the conditions of the sun-synchronous frozen orbit are further proposed, and the unique advantages of this type of orbit for the lunar far-side sample and return mission are revealed. The orbit matching problem of the relay satellite with the Chang’E-6 multi-launch window is resolved. Based on the concept of nodal period of low Earth orbit, the concept of repeat tracking condition for lunar orbit is proposed, and the corresponding constraint equation is established, which realizes the repeated periodic resonance of the mission orbit period with the tracking conditions, and maintains stable track-ing conditions for a long period. Taking the design of the Chang’E-6 relay mission orbit as the background, the detailed design process and results of the lunar high elliptical relay orbit satisfying the sun-synchronous, repeated tracking and frozen condition are proposed. The high-fidelity perturbation model is used to verify the orbit design results. The simulation results show that the relay orbit elements are frozen stable, well synchronized with the sun, and the accuracy of the repeated tracking condition is high, which can achieve the requirements of the Chang’E-6 lunar far side sample return mission.

参考文献

[1] Broucke R A. Long-term third-body effects via double averag-ing[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1) : 27-32. [2] Bertachini de Almeida Prado A F. Third-body perturbation in orbits around natural satellites[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1) : 33-40. [3] R. C. Domingos, R. V. deMoraes, and A. F. B. A. Prado, “Thirdbody perturbation in the case of elliptic orbits for the disturbing body,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Mackinac Island, Mich, USA, August 2007. [4] Domingos R d C, de Moraes R V, de Almeida Prado A. Third-body perturbation in the case of elliptic orbits for the disturbing body[J]. Mathematical Problems in Engineering, 2008, 2008 : 1-14. [5] Roscoe, C.W.T., Vadali, S.R., Alfriend, K.T.: Third-body per-turbation effects on satellite formations. J. Astronaut. Sci. 60(3–4), 408–433 (2015). https://doi.org/10.1007/s40295-015-0057-x [6] Lara,M.: Simplified equations for computing science orbits around planetary satellites. J. Guid. Control Dyn. 31(1), 172–181 (2008). https://doi.org/10.2514/1.31107 [7] Lara, M., Palacián, J.F.: Hill problem analytical theory to the order four: application to the computation of frozen orbits around planetary satellites. Math. Probl. Eng. 2009, 1–18 (2009). https://doi.org/10.1155/ 2009/753653 [8] Giacaglia, G.E., Murphy, J.P., Felsentreger, T.L.: A semi-analytic theory for the motion of a lunar satellite. Celest. Mech. Dyn. Astron. 3(1), 3–66 (1970). [9] Giacaglia, G.E., Murphy, J.P., Felsentreger, T.L., The motion of a satellite of the moon, NASA Reports………… [10] Nie, T., Gurfil, P.: Lunar frozen orbits revisited. Celest. Mech. Dyn. Astron. 130(10), 61 (2018). [11] d’Avanzo P, Teofilatto P, Ulivieri C. Long-term effects on lunar orbiter[J]. Acta Astronautica, 1997, 40(1) : 13-20. [12] Abad A, Elipe A, Tresaco E. Analytical model to find frozen orbits for a lunar orbiter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3) : 888-898. [13] D. Folta and D. Quinn, “Lunar frozen orbits,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA 2006-6749, pp. 1915–1932, August 2006. [14] T. A. Ely, “Stable constellations of frozen elliptical inclined lunar orbits,” Journal of the Astronautical Sciences, vol. 53, no. 3, pp.301–316, 2005. [15] T. A. Ely and E. Lieb, “Constellations of elliptical inclined lunar orbits providing polar and global coverage,” Journal of the Astronautical Sciences, vol. 54, no. 1, pp. 53–67, 2006. [16] Gramling, J.J., Ngan, Y. P., Quinn, D.A., Folta, D.C., Leroy, B.E., and Long, A.C., “A Lunar Communication and Navigation Satellite Concept for the Robotic Lunar Exploration Program,” 24th AIAA International Communications Satellite Systems Conference (ICSSC), 11 - 14 June 2006, San Diego, California, AIAA 2006-5364. [17] Advanced Communications and Navigation Satellite Conceptu-al Design for Lunar Network-Centric Operations [18] FOLKNER W M, WILLIAMS J G, BOGGS D H. The planetary and lunar Ephemeris DE421: IOM 343R-08- 003[R]. Pasadena: Jet Propulsion Laboratory, 2008. [19] Konopliv, A.S., Park, R.S., Dah-Ning Yuan, Asmar, S.W., etc. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission[J]. Journal of Geophysical Research: Planets, 2013, 118(7): 1415-1434. [20] Cutting G. H, Born G. H., Frautnick J. C. Orbit Analysis For SEASAT-A. Journal of the Astronautical Sciences, 1978, 16:315-342
文章导航

/