垂向冲击下的民机乘员腰椎载荷研究
收稿日期: 2023-06-02
修回日期: 2023-06-14
录用日期: 2023-07-17
网络出版日期: 2023-07-31
基金资助
中国民航大学科研启动基金项目(2020KYQD36);天津市教委科研计划项目(2022KJ070);国家重点研发计划(2022YFB4301000)
Lumbar load of seated occupant under vertical impact
Received date: 2023-06-02
Revised date: 2023-06-14
Accepted date: 2023-07-17
Online published: 2023-07-31
Supported by
Research Initiation Foundation of CAUC(2020KYQD36);Research Program Project of Tianjin Education Commission(2022KJ070);National Key R&D Program of China(2022YFB4301000)
在航空座椅的取证试验中,乘员腰椎载荷峰值水平可体现航空座椅对乘员的保护效果,同时也是判断其是否通过适航取证试验的重要指标。本文建立含座椅坐姿乘员一维集中参数模型,以数值假人模型和机身框段垂直坠撞试验为对象,使用综合评价指标和遗传算法,完成模型的参数识别和模型有效性验证。而后,基于经验证的模型,开展地板加速度的加载峰值、加载时间和加载波形对乘员腰椎载荷影响研究,结果表明乘员腰椎载荷峰值与速度变化量整体上呈正相关,与加载波形无关。根据速度变化量的不同,乘员腰椎峰值对加载时间和加载峰值的敏感性不同。研究提出了一种快速评估乘员腰椎载荷的手段,形成了基于地板加速度的乘员腰椎载荷峰值响应包面,可为运输类民机的适坠性设计提供支持。
石霄鹏 , 钟欣言 , 牟浩蕾 , 解江 , 曾志宇 , 李培瑶 . 垂向冲击下的民机乘员腰椎载荷研究[J]. 航空学报, 2024 , 45(8) : 229108 -229108 . DOI: 10.7527/S1000-6893.2023.29108
In the certification test of aircraft seat, the occupant’s peak lumbar load can reflect the protective effect of the aircraft seat on occupants, and is also a crucial indicator to judge whether the seat has passed the airworthiness certification test. Based on numerical dummy models and vertical crash test of fuselage section, a one-dimensional lumped parameter model of a seated occupant including the seat is established. Comprehensive evaluation indicators and genetic algorithms are used to complete the identification and verification of the model. Based on the verified model, the effect of peak floor acceleration, loading duration, and loading waveform on the lumbar load of the occupant is also studied. The results indicate that the peak force of the occupant’s lumbar is positively correlated with the overall change in speed, and is not related to the loading waveform. The sensitivity of occupant’s lumbar force peak to loading duration and acceleration peak varies depending on the variation in speed. The study proposes a rapid method for evaluating occupant lumbar load and forms a response envelope of occupant lumbar force peak based on floor acceleration, which can provide support for the design of crashworthiness of transportation civil aircraft.
1 | DELETOMBE E, DELSART D. Highly nonlinear and transient structural dynamics: A review about crashworthiness of composite aeronautical structures[J]. Aerospace Lab, 2018, 14(11): 1-11. |
2 | Federal Aviation Administration. Special conditions: Boeing model 787-8 airplane: 25-362-SC [S]. Washington, D. C.: Federal Aviation Administration, 2007. |
3 | Federal Aviation Administration. Emergency landing dynamic conditions: FAR 25.562 [S]. Washington, D. C. : Federal Aviation Administration, 1988. |
4 | JACKSON K E, FASANELLA E L, BOITNOTT R, et al. Occupant responses in a full-scale crash test of the Sikorsky ACAP helicopter[J]. Journal of the American Helicopter Society, 2004, 49(2): 127-139. |
5 | JACKSON K E, FASANELLA E L. Crash simulation of a vertical drop test of a commuter-class aircraft[J]. International Journal of Crashworthiness, 2005, 10(2): 173-182. |
6 | MOU H L, XIE J, FENG Z Y. Research status and future development of crashworthiness of civil aircraft fuselage structures: An overview[J]. Progress in Aerospace Sciences, 2020, 119: 100644. |
7 | 解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟[J]. 航空学报, 2022, 43(6): 525890. |
XIE J, MOU H L, FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: Tests and numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890 (in Chinese). | |
8 | 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报, 2019, 40(2): 522394. |
FENG Z Y, XIE J, LI H H, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522394 (in Chinese). | |
9 | LAMANNA G, VANACORE A, GUIDA M, et al. Development of a head injury criteria-compliant aircraft seat by design of experiments[J]. Aerospace, 2019, 6(9): 95. |
10 | DI NAPOLI F, DE LUCA A, CAPUTO F, et al. Mixed FE–MB methodology for the evaluation of passive safety performances of aeronautical seats[J]. International Journal of Crashworthiness, 2019, 24(3): 314-325. |
11 | BHONGE P, LANKARANI H. Finite element modeling strategies for dynamic aircraft seats[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA: SAE International, 2008. |
12 | THORBOLE C K, LANKARANI H M, COSTELLO T. Temperature effect on the dynamic characteristic of the aircraft seat cushion[C]∥ Proceedings of ASME 2009 International Mechanical Engineering Congress and Exposition. 2010: 311-317. |
13 | SINGH H J, WERELEY N M. Biodynamic model of a seated occupant exposed to intense impacts[J]. AIAA Journal, 2015, 53(2): 426-435. |
14 | LATHAM F. A study in body ballistics: Seat ejection[J]. Proceedings of the Royal Society of London Series B, Biological Sciences, 1957, 147(926): 121-139. |
15 | PAYNE P R. The dynamics of human restraint systems[M]∥ Impact acceleration stress: A symposium. Washington, D.C.: National Research Council, 1962: 195-257. |
16 | PATIL M K, PALANICHAMY M S, GHISTA D N. Dynamic response of human body seated on a tractor and effectiveness of suspension systems[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA: SAE International, 1977. |
17 | LIU X X, SHI J, LI G H, et al. Biodynamic response and injury estimation of ship personnel to ship shock motion induced by underwater explosion[C]∥ Proceeding of 69th Shock and Vibration Symposium. Alabama: NASA Conference Publication, 1998, 18: 1-18. |
18 | 白先旭, 程伟, 徐时旭, 等. 坐姿人体四自由度动力学模型研究-集中参数模型及其在汽车乘坐舒适性研究中的应用[J]. 工程设计学报, 2017, 24(6): 638-647. |
BAI X X, CHENG W, XU S X, et al. Research on 4-degree-of-freedom dynamics model of seated human: Lumped-parameter model and its application to ride comfort research for automobiles[J]. Chinese Journal of Engineering Design, 2017, 24(6): 638-647 (in Chinese). | |
19 | Federal Aviation Administration. Methodology for dynamic seat certification by analysis for use in Parts 23, 25, 27, and 29 airplanes and rotorcraft: AC 20-146A [S]. Washington, D. C.: Federal Aviation Administration, 2018. |
20 | OLIVARES G. Hybrid II and federal aviation administration hybrid III anthropomorphic test dummy dynamic evaluation test series: DOT/FAA/AR-11/24[R]. Washington, D.C.: Federal Aviation Administration, 2013. |
21 | 冯振宇, 杨永攀, 贺永龙, 等. 座椅约束下航空假人垂直冲击动态响应特性研究[J]. 工程力学, 2020, 37(8): 246-256. |
FENG Z Y, YANG Y P, HE Y L, et al. Research on vertical dynamic characteristics of aviation dummy under seat constraint[J]. Engineering Mechanics, 2020, 37(8): 246-256 (in Chinese). |
/
〈 |
|
〉 |