论 文

两种SST湍流模型改进方法适用性分析

  • 曾宇 ,
  • 汪洪波 ,
  • 连城阅 ,
  • 杨揖心 ,
  • 熊大鹏 ,
  • 孙明波 ,
  • 刘卫东
展开
  • 国防科技大学 空天科学学院 高超声速技术实验室,长沙 410073
.E-mail: whbwatch@nudt.edu.cn

收稿日期: 2024-04-23

  修回日期: 2024-04-25

  录用日期: 2024-04-30

  网络出版日期: 2024-05-08

基金资助

国家自然科学基金(12102471)

Applicability analysis of two improved methods of SST turbulence model

  • Yu ZENG ,
  • Hongbo WANG ,
  • Chengyue LIAN ,
  • Yixin YANG ,
  • Dapeng XIONG ,
  • Mingbo SUN ,
  • Weidong LIU
Expand
  • Hypersonic Technology Laboratory,College of Aerospace Science,National University of Defense Technology,Changsha 410073,China

Received date: 2024-04-23

  Revised date: 2024-04-25

  Accepted date: 2024-04-30

  Online published: 2024-05-08

Supported by

National Natural Science Foundation of China(12102471)

摘要

雷诺平均湍流模型计算效率高,在工程应用上具有重要意义。传统模式与新型数据驱动模式湍流模型改进旨在提升湍流模型预测精度。然而,新型数据驱动模式大多针对低速流动,对其在高速流动中的应用、评估以及推广较少。两种模式对比性研究的缺乏也给二者的合理利用产生了困扰。在标准雷诺剪切应力输运(SST)模型框架下,一方面采用传统模式引入可压缩效应作用于输运方程耗散项,另一方面根据新型数据驱动模式引入耗散项修正。两种模式下的改进主要作用于流场中的剪切层。超声速压缩拐角和超声速凹腔斜坡算例的测试结果表明,新型数据驱动模式可以获得不同物理特征量之间初步的、可解释的非线性关系,但需经过传统模式的调整与再优化才能应用,具有一定的推广性,在捕捉某些湍流细节方面表现出优于传统模式的性能,但精度仍有待提高。

本文引用格式

曾宇 , 汪洪波 , 连城阅 , 杨揖心 , 熊大鹏 , 孙明波 , 刘卫东 . 两种SST湍流模型改进方法适用性分析[J]. 航空学报, 2024 , 45(S1) : 730574 -730574 . DOI: 10.7527/S1000-6893.2024.30574

Abstract

The Reynolds-averaged turbulence model has high computational efficiency, and is of great significance in engineering applications. The purpose of the improvement of the traditional and the new data-driven modes of turbulence model is to improve the prediction accuracy. However, the new data-driven mode is mainly for the low-speed flow, and there are less reports on the application, evaluation and promotion of the mode for the high-speed flow. The lack of comparative study of the two modes also causes problems for their rational use. Under the frame of the standard Reynolds Shear Stress Transport (SST) model, the traditional mode is adopted to introduce the compressibility effect into the dissipative term of the transport equation, and the new data-driven mode is used to modify the dissipative term. The improvement in the two modes mainly acts on the shear layer in the flow field. The test results of supersonic compression corner and supersonic cavity ramp show that the new data-driven mode can obtain a preliminary and explainable nonlinear relationship between different physical characteristics, but can only be applied after adjustment and re-optimization of the traditional mode. It has a certain generalization and is better than the traditional mode in capturing some turbulence details, but the accuracy still needs to be improved.

参考文献

1 曾宇, 汪洪波, 孙明波, 等. SST湍流模型改进研究综述[J]. 航空学报202344(9): 027411.
  ZENG Y, WANG H B, SUN M B, et al. SST turbulence model improvements: Review[J]. Acta Aeronautica et Astronautica Sinica202344(9): 027411 (in Chinese).
2 RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a Mach 3 compression ramp interaction at Reθ = 2400[J]. AIAA Journal200947(2): 373-385.
3 WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal200745(4): 879-889.
4 DI STEFANO M A, HOSDER S, BAURLE R A. Effect of turbulence model uncertainty on scramjet isolator flowfield analysis[J]. Journal of Propulsion and Power202036(1): 109-122.
5 GROSS N, BLAISDELL G, LYRINTZIS A. Analysis of modified compressibility corrections for turbulence models[C]∥ Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
6 SETTLES G S, WILLIAMS D R, BACA B K, et al. Reattachment of a compressible turbulent free shear layer[J]. AIAA Journal198220(1): 60-67.
7 HORSTMAN C C, SETTLES G S, WILLIAMS D R, et al. A reattaching free shear layer in compressible turbulent flow[J]. AIAA Journal198220(1): 79-85.
8 BERESH S J, WAGNER J L, CASPER K M. Compressibility effects in the shear layer over a rectangular cavity[J]. Journal of Fluid Mechanics2016808: 116-152.
9 TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics201225(1): 25-32.
10 BRADSHAW P. Turbulence modeling with application to turbomachinery[J]. Progress in Aerospace Sciences199632(6): 575-624.
11 汪洪波, 曾宇, 熊大鹏, 等. SST湍流模型的激波与可压缩效应改进[J]. 航空学报202445(3): 128694.
  WANG H B, ZENG Y, XIONG D P, et al. Improvement of shock wave and compressibility effects in SST turbulence model[J]. Acta Aeronautica et Astronautica Sinica202445(3): 128694 (in Chinese).
12 PICKLES J D, METTU B R, SUBBAREDDY P K, et al. On the mean structure of sharp-fin-induced shock wave/turbulent boundary layer interactions over a cylindrical surface[J]. Journal of Fluid Mechanics2019865: 212-246.
13 GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences201572: 80-99.
14 RAJE P, SINHA K. Anisotropic SST turbulence model for shock-boundary layer interaction[J]. Computers & Fluids2021228: 105072.
15 POPE S B. A more general effective-viscosity hypothesis[J]. Journal of Fluid Mechanics197572: 331-340.
16 GATSKI T B, JONGEN T. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows[J]. Progress in Aerospace Sciences200036(8): 655-682.
17 BISWAS R, DURBIN P A, MEDIC G. Development of an elliptic blending lag k-ω model[J]. International Journal of Heat and Fluid Flow201976: 26-39.
18 阎超. 航空CFD四十年的成就与困境[J]. 航空学报202243(10): 026490.
  YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica202243(10): 026490 (in Chinese).
19 WEATHERITT J, SANDBERG R. A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship[J]. Journal of Computational Physics2016325: 22-37.
20 LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics2016807: 155-166.
21 赵耀民, 徐晓伟. 基于基因表达式编程的数据驱动湍流建模[J]. 力学学报202153(10): 2640-2655.
  ZHAO Y M, XU X W. Data-driven turbulence modelling based on gene-expression programming[J]. Chinese Journal of Theoretical and Applied Mechanics202153(10): 2640-2655 (in Chinese).
22 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报201937(3): 444-454.
  ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica201937(3): 444-454 (in Chinese).
23 KAANDORP M L A, DWIGHT R P. Data-driven modelling of the Reynolds stress tensor using random forests with invariance[J]. Computers & Fluids2020202: 104497.
24 SPALART P. An old-fashioned framework for machine learning in turbulence modeling[DB/OL]. arXiv preprint: 2308.00837, 2023.
25 CRANMER M, SANCHEZ-GONZALEZ A, BATTAGLIA P, et al. Discovering symbolic models from deep learning with inductive biases[J]. Advances in Neural Information Processing Systems202033: 17429-17442.
26 CRANMER M. Interpretable machine learning for science with PySR and SymbolicRegression.jl[DB/OL]. arXiv preprint: 2305.01582, 2023.
27 SAHOO S S, LAMPERT C H, MARTIUS G. Learning equations for extrapolation and control[C]∥Proceedings of the International Conference on Machine Learning, 2018.
28 WU C Y, ZHANG Y F. Enhancing the shear-stress-transport turbulence model with symbolic regression: A generalizable and interpretable data-driven approach[J]. Physical Review Fluids20238(8): 084604.
29 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
30 WILCOX D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal199230(11): 2639-2646.
31 LIOU W W, HUANG G, SHIH T H. Turbulence model assessment for shock wave/turbulent boundary-layer interaction in transonic and supersonic flows[J]. Computers & Fluids200029(3): 275-299.
32 HOLDEN M S, WADHAMS T P, MACLEAN M G. Measurements in regions of shock wave/turbulent boundary layer interaction from Mach 4 to 10 for open and “blind” code evaluation/validation[C]∥ Proceedings of the 21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013.
33 MARVIN J, BROWN J L, GNOFFO P. Experimental database with baseline CFD solutions: 2-D and axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions: NASA/TM-2013-216604 [R]. Washington, D.C.: NASA, 2013.
文章导航

/