气动噪声专栏

非规则三角排列的三圆柱噪声特性与控制

  • 李勇 ,
  • 叶剑海 ,
  • 王成会
展开
  • 温州大学 机电工程学院,温州 325035
.E-mail: yli@wzu.edu.cn

收稿日期: 2024-02-28

  修回日期: 2024-04-07

  录用日期: 2024-04-30

  网络出版日期: 2024-05-08

基金资助

国家自然科学基金(11972022)

Characterization and control of three-cylinder noise in irregular triangular arrangement

  • Yong LI ,
  • Jianhai YE ,
  • Chenghui WANG
Expand
  • Faculty of Mechanical and Electrical Engineering,Wenzhou University,Wenzhou 325035,China
E-mail: yli@wzu.edu.cn

Received date: 2024-02-28

  Revised date: 2024-04-07

  Accepted date: 2024-04-30

  Online published: 2024-05-08

Supported by

National Natural Science Foundation of China(11972022)

摘要

在开口射流风洞中,采用远场麦克风阵列和粒子图像测速仪(PIV)对等直径三圆柱在不同对称/非对称排列方式下的噪声和流场进行了测试,并通过在圆柱后缘安装实心或多孔分离隔板对噪声进行了控制。实验风速U0=20~50 m/s,基于圆柱直径D的雷诺数ReD =2.7×104~6.8×104。噪声测试发现,对称中心排列的三圆柱总声压随中心位置圆柱2的流向位置x/H在区间(-2,+2)呈现波峰与波谷的变化。同一风速下,波峰处(x/H=-1.75)与波谷处(x/H=-1.5或+0.5)的峰值噪声最大差值可达20 dB,且圆柱2位于上游位置(x/H<0)时的波峰区间噪声水平也明显高于下游位置(x/H>0)。圆柱2沿圆柱1、3中心点等周长圆弧上布置时,三圆柱的噪声与流向布置角度变化不明显。控制研究发现,对于中心流向布置的三圆柱,在上游圆柱后缘安装合适分离隔板可以改变流场并抑制噪声。流向位置x/H=-2时,圆柱2后缘采用长度L/D=1或穿孔率σ=18.4%,L/D=2的分离隔板可降低三圆柱噪声12 dB,如继续偏转隔板到β=30°甚至可达20 dB。流向位置x/H=-2时,在圆柱1、3上安装同类型分离隔板。对于L/D=1的实心隔板,平均降噪5 dB,降噪效果不明显。L/D=2、σ=18.2%的分离隔板,随着偏转角度β增大,降噪效果逐渐增强。当偏转角度β≥20°以上时可降低噪声10 dB以上。PIV测试以及POD分析表明,实验中三圆柱布置方式下的噪声主要来自于上游圆柱涡脱落与下游表面上的涡-固干扰,分离隔板噪声抑制的机理是由于其显著抑制了上游圆柱的涡脱落,即抑制了流场中卡门涡街的形成。

本文引用格式

李勇 , 叶剑海 , 王成会 . 非规则三角排列的三圆柱噪声特性与控制[J]. 航空学报, 2024 , 45(23) : 630316 -630316 . DOI: 10.7527/S1000-6893.2024.30316

Abstract

The characteristics of noise and flow field of equal-diameter three cylinders in different symmetric/asymmetric arrangements were tested in an open-jet wind tunnel using a far-field microphone array and the Particle Image Velocimeter (PIV), and the flow field and noise were controlled by installing solid or porous splitter plates at the trailing edges of the cylinders. The experimental wind speed U0=20–50 m/s, and the Reynolds number ReD =2.7×104–6.8×104 based on the diameter of the cylinders D. Noise tests revealed that the total sound pressure of the three cylinders arranged in symmetric centers showed a variation of wave peaks and valleys with the streamwise position x/H of the center-positioned Cylinder 2 between (-2, +2). At the same wind speed, the maximum difference between the peak noise at the wave peak (x/H =-1.75) and the valleys (x/H =-1.5 or +0.5) can be up to 20 dB, and the noise level in the wave peak range at the upstream position (x/H <0) was also significantly higher than that at the downstream position (x/H >0). When Cylinder 2 was arranged on an arc with the center points of Cylinders 1 and 3, the noise of the three cylinders did not change significantly with the flow arrangement angle. The control study found that for the three cylinders arranged in the central-flow direction, installing an appropriate splitter plate at the trailing edge of the upstream cylinder can change the flow field and suppress the noise. At the streamwise position x/H =-2, installing the splitter plate with length L/D=1 or the perforated plate with perforation σ=18.4% and the splitter plate with length L/D =2 at the trailing edge of Cylinder 2 can reduce the noise of the three cylinders by 12 dB, and the reduction can even reach 20 dB if continuing to deflect the splitter pater to β=30°. However, at the same streamwise position, when the same type of splitter plates was installed on Cylinders 1 and 3, the solid plate with L/D =1 can achieve the average noise reduction of 5 dB, which is not significant; for the perforated splitter with L/D =2 and σ=18.2%, the noise reduction was gradually enhanced with the increase of the deflection angle β; when the deflection angle β≥20°, the noise can be reduced by more than 10 dB. PIV test and POD analysis showed that the noise in the experimental three-cylinder arrangement mainly comes from the vortex shedding of the upstream cylinder and the vortex-solid interaction on the downstream surface, and the mechanism of noise suppression of the splitter plate is due to the significant suppression of the vortex shedding of the upstream cylinder, i.e., the suppression of the Karmen vortex street in the flow field.

参考文献

1 何国建, 方红卫, 府仁寿. 桥墩群对河道水流影响的三维数值分析[J]. 水动力学研究与进展A辑2007(3): 345-351.
  HE GJ, FANG HW, GU RS. Three-dimensional numerical analysis of the impact of bridge pier groups on river flow[J]. Hydrodynamics Research and Progress Series A2007(3): 345-351 (in Chinese).
2 JIN J, MENG B. Computation of wave loads on the superstructures of coastal highway bridges[J]. Ocean Engineering201138(17-18): 2185-2200.
3 陈薛浩, 朱志夏. 基于Fluent的海底管线附近流场分析[J]. 上海交通大学学报201246(3): 458-462.
  CHEN X H, ZHU Z X. Analysis of flow around submarine pipeline based on fluent[J]. Journal of Shanghai Jiao Tong University201246(3): 458-462 (in Chinese).
4 LIANG D F, CHENG L, LI F J. Numerical modeling of flow and scour below a pipeline in currents[J]. Coastal Engineering200552(1): 43-62.
5 SONG J N, LU L, TENG B, et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow[J]. Ocean Engineering201138(11-12): 1308-1322.
6 VON KáRMáN T. Aerodynamics: Selected topics in the light of their historical development[M]. Mineola: Dover Publications, 2004.
7 夏雪湔, 邓学蓥. 工程分离流动力学[M]. 北京: 北京航空航天大学出版社, 1991.
  XIA X W, DENG X Y. Engineering separation flow mechanics[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1991 (in Chinese).
8 ALAM M M, RASTAN M R, WANG L J, et al. Flows around two nonparallel tandem circular cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics2022220: 104870.
9 黄钰期, 邓见, 任安禄. 黏性非定常圆柱绕流的升阻力研究[J]. 浙江大学学报(工学版)200337(5): 596-601.
  HUANG Y Q, DENG J, REN A L. Research on lift and drag in unsteady viscous flow around circular cylinders[J]. Journal of Zhejiang University (Engineering Science)200337(5): 596-601 (in Chinese).
10 HAMDOON F O, FLAIEH E H, JABER A A. Numerical investigations of two vibrating cylinders in uniform flow using overset mesh[J]. Curved and Layered Structures202310(1): 20220208.
11 ISHIGAI S, NISHIKAWA E, NISHIMURA K, et al. Experimental study on structure of gas flow in tube banks with tube axis normal to flow: part 1, Karman vortex flow from two tubes at various spacings[J]. Transactions of the Japan Society of Mechanical Engineers197137(304): 2319-2326.
12 郭明旻, 黄东群, 徐有恒. 串列双圆柱同步测压实验结果的相关分析[J]. 力学季刊200829(1): 48-53.
  GUO M M, HUANG D Q, XU Y H. Correlation analysis for experimental result of simultaneous multi-pressure measurement of two circular cylinders in tandem arrangement[J]. Chinese Quarterly of Mechanics200829(1): 48-53 (in Chinese).
13 苏波. 圆柱绕流及某斜拉桥拉索的尾流驰振分析[D]. 兰州: 兰州交通大学, 2018.
  SU B. Analysis of the flow around cylinders and the wake chattering of cables in a cable-stayed bridge[D].Lanzhou: Lanzhou Jiatong University, 2018 (in Chinese).
14 张政, 鲁丽. 串列三圆柱的尾流特性及涡激振动研究[J]. 四川轻化工大学学报(自然科学版)202336(4): 19-25.
  ZHANG Z, LU L. Study on wake characteristics and vortex vibration of tandem three-cylinder[J]. Journal of Sichuan University of Light and Chemical Engineering (Natural Science Edition)202336(4): 19-25 (in Chinese).
15 JOGEE S, ANUPINDI K. Near-wake flow and thermal characteristics of three side-by-side circular cylinders for large temperature differences using large-eddy simulation[J]. International Journal of Heat and Mass Transfer2022184: 122324.
16 RAHMAN H, SHAMS-UL-ISLAM, ABBASI W S, et al. Numerical computations for flow patterns and force statistics of three rectangular cylinders[J]. Mathematical Problems in Engineering20212021: 9991132.
17 CHEN W L, JI C N, WILLIAMS J, et al. Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: Vibration response and galloping mechanism[J]. Journal of Fluids and Structures201878: 215-238.
18 BEHARA S, CHANDRA V, RAVIKANTH B. Flow-induced oscillations of three tandem circular cylinders in a two-dimensional flow[J]. Journal of Fluids and Structures201991: 102711.
19 CHEN W L, JI C N, ALAM M M, et al. Numerical simulations of flow past three circular cylinders in equilateral-triangular arrangements[J]. Journal of Fluid Mechanics2020891: A14.
20 王华坤, 马轩, 陈凯啸, 等. 等边三角形排列三圆柱结构的流致振动数值研究[J]. 海洋开发与管理201835(S1): 54-60.
  WANG H K, MA X, CHEN K X, et al. Numerical study on the hydrodynamic vibration of equilateral triangularly arranged three-cylinder structure[J]. Ocean Development and Management201835(S1): 54-60 (in Chinese).
21 BANSAL M S, YARUSEVYCH S. Experimental study of flow through a cluster of three equally spaced cylinders[J]. Experimental Thermal and Fluid Science201780: 203-217.
22 张晓娜, 及春宁, 陈威霖, 等. 正三角形排列刚性耦合三圆柱涡激振动特性及尾涡模式[J]. 振动与冲击202140(12): 132-142.
  ZHANG X N, HE C N, CHEN W L, et al. Vibration characteristics and tail vortex modes of rigidly coupled triple cylindrical vortex excitations arranged in a positive triangle[J]. Vibration and Shock202140(12): 132-142 (in Chinese).
23 赵红晓. 多圆柱绕流的数值模拟及力学分析[J]. 实验室研究与探索202342(7): 130-135.
  ZHAO H X. Numerical simulation and mechanical analysis of flow around multiple cylinders[J]. Research and Exploration in Laboratory202342(7): 130-135 (in Chinese).
24 PUSPASARI A D, TANG J H. Numerical simulation of scouring around groups of six cylinders with different flow directions[J]. Journal of the Chinese Institute of Engineers202346(4): 420-430.
25 陈元瑞, 林子宽, 孟静, 等. 多圆柱绕水动力特性与流场特征的实验研究[C]∥北京: 中国力学学会, 2021: 9.
  CHEN Y R, LIN Z K, MENG J, et al. Experimental study of hydrodynamic properties and flow field characteristics of multi-cylinder winding[C]∥Beijing: Chinese Society of Theoretical and Applied Mechanics, 2021: 9 (in Chinese).
26 杨纪伟, 滕丽娟, 胥战海. 多圆柱绕流旋涡脱落和流场形态概论[J]. 人民长江200940(3): 66-68, 86.
  YANG J W, TENG L J, XU Z H. Summary of eddy separation around multi-columns and flow field form[J]. Yangtze River200940(3): 66-68, 86 (in Chinese).
27 WANG C H, LI Y. Control of a circular cylinder flow using attached solid/perforated splitter plates at deflection angles[J]. Physics of Fluids202335(10): 105109.
文章导航

/