基于幅相自适应注入的伺服电机无传感器控制
收稿日期: 2024-01-22
修回日期: 2024-02-28
录用日期: 2024-05-08
网络出版日期: 2024-05-08
基金资助
国家杰出青年科学基金(52025073);国家自然科学基金重大项目(51991383);航空科学基金(202200580R3001)
Sensorless control of servo motor based on adaptive amplitude⁃phase square wave injection
Received date: 2024-01-22
Revised date: 2024-02-28
Accepted date: 2024-05-08
Online published: 2024-05-08
Supported by
National Science Fund for Distinguished Young Scholars(52025073);Major Program of National Natural Science Foundation of China(51991383);Aeronautical Science Foundation of China(202200580R3001)
现有的无位置传感器控制方法,受收敛速度和估计精度的制约,难以直接应用于高动态机电伺服系统。为提升伺服电机高动态下无位置传感器控制的估计精度,提出基于幅相自适应方波电压注入的永磁同步伺服电机无位置传感器控制方法。通过注入高频方波电压信号,解调交轴高频响应电流,实现高动态的转子位置估计。同时根据电机实时运行状态,自适应调节注入电压的幅值与相位,有效减少因逆变器非线性和电机交叉饱和效应引起的估计误差。最后在2 kW的伺服电机平台上对所提方法的性能进行了实验验证。实验结果表明:采用基于幅相自适应方波注入的转子位置估计方法,在实现伺服电机高动态无传感器控制的同时,有效提升了转子位置估计的精度。
和阳 , 李旺旺 , 吉敬华 , 赵文祥 , 朱纪洪 . 基于幅相自适应注入的伺服电机无传感器控制[J]. 航空学报, 2024 , 45(15) : 630211 -630211 . DOI: 10.7527/S1000-6893.2024.30211
Existing sensorless control methods are constrained by the convergence rate and estimation accuracy, and is difficult to be directly applied to high dynamic electro-mechanical servo systems. To improve the estimation accuracy of sensorless control under high dynamics, this paper proposes a novel sensorless control method for the permanent magnet synchronous motor based on amplitude-phase adaptive square wave injection. By injecting high-frequency square wave voltage signals and demodulating the high-frequency response current of the q-axis, high dynamic rotor position estimation is achieved. At the same time, the amplitude and phase of the injected voltage are adaptively adjusted according to the real-time operating status of the motor. Therefore, the estimation errors caused by inverter nonlinearity and motor cross-saturation effect are effectively reduced. Finally, the performance of the method proposed is experimentally verified on a 2 kW servo motor platform. The experimental results show that the proposed method can enhance the accuracy of rotor position estimation, while achieving high dynamic characteristics of sensorless control.
1 | 王莉, 戴泽华, 杨善水, 等. 电气化飞机电力系统智能化设计研究综述[J]. 航空学报, 2019, 40(2): 522405. |
WANG L, DAI ZH, YANG SS, et al. Review of intelligent design of electrified aircraft power system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522405 (in Chinese). | |
2 | 李永锋. 宽体客机飞控电作动系统设计[J]. 航空学报, 2017, 38(S1): 721531. |
LI YF. Electrically powered actuation system design for long range wide body commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 721531 (in Chinese). | |
3 | 司宾强, 黄玉平, 朱纪洪, 等. 高可靠电机系统主动变结构与容错控制技术[J]. 航空学报, 2021, 42(11): 524853. |
SI BQ, HUANG YP, ZHU JH, et al. Active reconfigurable and fault-tolerant control technology for high reliability motor system[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524853 (in Chinese). | |
4 | 孙晓哲, 侯东, 杨建忠. 双余度机电作动器力纷争机理及敏感性[J]. 航空学报, 2023, 44(S1): 727661. |
SUN XZ, HOU D, YANG JZ. Mechanism and sensitivity of force fight in dual redundant electromechanical actuators[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727661 (in Chinese). | |
5 | FU J, MARE JC, YU LM, et al. Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft[J]. Chinese Journal of Aeronautics, 2018, 31(5): 892-913. |
6 | LIN JC, ZHAO YT, ZHANG P, et al. Research on compound sliding mode control of a permanent magnet synchronous motor in electromechanical actuators[J]. Energies, 2021, 14(21): 7293-7293. |
7 | 魏科鹏, 胡健, 姚建勇, 等. 航空机电作动器神经网络快速终端滑模控制[J]. 航空学报, 2021, 42(6): 624540. |
WEI KP, HU J, YAO JY, et al. Fast terminal sliding mode control of neural networks for aeromechanical actuators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624540 (in Chinese). | |
8 | LIU CQ, LUO GZ, CHEN Z, et al. A linear ADRC-based robust high-dynamic double loop servo system for aircraft electromechanical actuators[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2174-2187. |
9 | MINGARDI D, MORANDIN M, BOLOGNANI S, et al. On the proprieties of the differential cross-saturation inductance in synchronous machines[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 991-1000. |
10 | LI HY, ZHANG X, YANG SY, et al. Unified graphical model of high-frequency signal injection methods for PMSM sensorless control[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4411-4421. |
11 | BI GD, ZHAO NN, ZHANG GQ, et al. Current vector angle adaptive adjustment based rotor position offset error suppression method for sensorless PMSM drives[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10536-10547. |
12 | 毕广东, 张国强, 王高林, 等. 高频信号注入永磁电机系统转子位置估计偏差在线补偿方法[J]. 中国电机工程学报, 2022, 42(19): 7205-7213. |
BI GD, ZHANG GQ, WANG GL, et al. Online compensation method of estimated rotor position offset error for high-frequency signal injection based PMSM drives[J]. Proceeding of the CSEE, 2022, 42(19): 7205-7213 (in Chinese). | |
13 | QIU XQ, JI JH, ZHAO WX, et al. Position estimation error compensation for sensorless control of SPMSM based on space vector signal injection[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 1324-1334. |
14 | WANG GL, QU LZ, ZHAN HL, et al. Self-commissioning of permanent magnet synchronous machine drives at standstill considering inverter nonlinearities[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6615-6627. |
15 | WANG YR, XU YX, ZOU JB. ILC-based voltage compensation method for PMSM sensorless control considering inverter nonlinearity and sampling current DC bias[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5980-5989. |
16 | KIM D, KWON YC, SUL SK, et al. Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple[J]. IEEE Transactions on Industry Applications, 2016, 52(1): 302-312. |
17 | 刘兵, 周波, 倪天恒. 基于广义二阶积分器的SPMSM无位置传感器控制逆变器非线性补偿策略[J].中国电机工程学报, 2018, 38(11): 3365-3374. |
LIU B, ZHOU B, NI TH. Inverter nonlinearity compensation for SPMSM sensor-less control based on second-order generalized integrator[J]. Proceeding of the CSEE, 2018, 38(11): 3365-3374 (in Chinese). | |
18 | BI GD, DING QW, ZHANG GQ, et al. Adaptive quasi-proportional-resonant observer-based rotor position estimation for sensorless PMSM drives[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 15221-15233. |
19 | BI GD, ZHANG GQ, WANG GL, et al. Adaptive iterative learning control-based rotor position harmonic error suppression method for sensorless PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11): 10870-10881. |
20 | 邓国发, 王辉, 吴轩, 等. 一种可抑制逆变器非线性影响的永磁同步电机无位置传感器控制策略[J]. 中国电机工程学报, 2018, 38(24): 7381-7390, 7464. |
DENG GF, WANG H, WU X, et al. A sensorless control strategy of permanent magnet synchronous motor for suppressing nonlinear effects of inverter[J]. Proceeding of the CSEE, 2018, 38(24): 7381-7390, 7464 (in Chinese). | |
21 | 吴春, 陈科, 南余荣, 等. 考虑交叉饱和效应的变角度方波电压注入永磁同步电机无位置传感器控制[J]. 电工技术学报, 2020, 35(22): 4678-4687. |
WU C, CHEN K, NAN YR, et al. Variable angle square-wave voltage injection for sensorless control of PMSM considering cross-saturation effect[J]. Transaction of China Electrotechnical Society, 2020, 35(22): 4678-4687 (in Chinese). |
/
〈 |
|
〉 |