流体力学与飞行力学

一种新型热力学两温度模型数值计算方法

  • 李鹏 ,
  • 丁明松 ,
  • 陈坚强 ,
  • 刘庆宗 ,
  • 傅杨奥骁 ,
  • 江涛 ,
  • 梅杰 ,
  • 许勇
展开
  • 1.空天飞行空气动力科学与技术全国重点实验室,绵阳 621000
    2.中国空气动力研究与发展中心 计算空气动力研究所,绵阳 621000
.E-mail: chenjq@cardc.cn

收稿日期: 2024-02-03

  修回日期: 2024-03-28

  录用日期: 2024-04-24

  网络出版日期: 2024-04-30

基金资助

国家重点研发计划(2019YFA0405203);国家数值风洞工程

A new numerical calculation method of thermodynamic two-temperature model

  • Peng LI ,
  • Mingsong DING ,
  • Jianqiang CHEN ,
  • Qingzong LIU ,
  • Yang’aoxiao FU ,
  • Tao JIANG ,
  • Jie MEI ,
  • Yong XU
Expand
  • 1.State Key Laboratory of Aerodynamics,Mianyang 621000,China
    2.Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: chenjq@cardc.cn

Received date: 2024-02-03

  Revised date: 2024-03-28

  Accepted date: 2024-04-24

  Online published: 2024-04-30

Supported by

National Key Research and Development Program(2019YFA0405203);National Numerical Windtunnel Project

摘要

高焓气体热力学参数的理论模式在两温度模型求解器中应用广泛,但在具体应用中存在程序运行效率低、数值稳定性差等问题。发展了一种更为简单高效的热力学两温度模型能量体系计算方法,借鉴单温度模型热力学平衡能量的拟合表征形式,通过重构再造内能模态表征形式,分别得到由平动温度表征的线性能量项、由振动温度表征的非线性能量项,进而引入Chemkin拟合式对非线性能量项进行表征计算,从而避免理论模式采用指数表征式存在的潜在数值问题。数值研究表明:该方法在预测热化学非平衡流动及其相关气动特性方面计算精度可靠,且相比于采用理论模式的求解器计算效率更高,其单步迭代平均耗时可减少约12%,计算收敛所用耗时可降低10%以上,对提升热化学非平衡流动模拟效率具有积极效果,具有良好的工程应用价值和前景。

本文引用格式

李鹏 , 丁明松 , 陈坚强 , 刘庆宗 , 傅杨奥骁 , 江涛 , 梅杰 , 许勇 . 一种新型热力学两温度模型数值计算方法[J]. 航空学报, 2024 , 45(22) : 130287 -130287 . DOI: 10.7527/S1000-6893.2024.30287

Abstract

The theoretical model for calculating the thermodynamic parameters of high enthalpy gases, widely used in two-temperature model solvers, has the shortcomings such as low program operation efficiency and poor numerical stability in specific applications. A simpler and more effective method for calculating the thermodynamic energy system of the two-temperature model is developed. Drawing on the fitting expressions of the thermodynamic equilibrium energy in the one-temperature model, the representation forms of the internal energy modes are reconstructed to obtain separately a linear energy term characterized by translational temperature and a nonlinear energy term characterized by vibrational temperature. Meanwhile, Chemkin’s fitting polynomials are introduced to characterize and calculate the nonlinear energy term, so as to avoid the potential numerical problems arising from the use of exponential expressions in the theoretical model. Numerical studies indicate that the new method has reliable computational accuracy in predicting thermochemical nonequilibrium flows and their associated aerodynamic characteristics, and has higher computational efficiency compared to the solvers that use the theoretical model. The average time of single step iteration can be reduced by about 12%,and the computational time for convergence can be reduced by more than 10%, which has a positive effect on improving the efficiency of simulation of thermochemical nonequilibrium flows, and has good prospects for engineering applications.

参考文献

1 王京盈. 高速高温流动的化学非平衡及热辐射耦合效应研究[D]. 北京: 北京航空航天大学, 2015.
  WANG J Y. Numerical study on coupled effects of the chemical nonequilibrium and thermal radiation in high speed and high temperature flows[D]. Beijing: Beihang University, 2015 (in Chinese).
2 郝佳傲. 高超声速热化学非平衡耦合效应的建模研究[D]. 北京: 北京航空航天大学, 2018.
  HAO J A. Modeling of thermochemical nonequilibrium coupling effects in hypersonic flows[D]. Beijing: Bei-hang University, 2018 (in Chinese).
3 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳: 中国空气动力研究与发展中心, 2005.
  ZHAO H Y. Parallel numerical study of whole scramjet engine[D]. Mianyang: China Aerodynamics Research and Development Center, 2005 (in Chinese).
4 董海波. 化学非平衡流计算方法改进及其应用[D]. 大连: 大连理工大学, 2018.
  DONG H B. Improvement of calculation method of chemical non-equilibrium flow and its application[D]. Dalian: Dalian University of Technology, 2018 (in Chinese).
5 高振勋, 蒋崇文, 李椿萱. 高超高焓非平衡流动数值模拟方法研究综述[J]. 力学进展202353(3): 561-591.
  GAO Z X, JIANG C W, LI C X. Review of numerical simulation methods for hypersonic and high-enthalpy non-equilibrium flow[J]. Advances in Mechanics202353(3): 561-591 (in Chinese).
6 GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K[R]. Washington, D.C.: NASA, 1990.
7 KEE R J, RUPLEY F M, MEEKS E, et al. CHEMKIN-Ⅲ: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics[R]. New Mexico: Office of Scientific and Technical Information (OSTI), 1996.
8 CAPITELLI M, COLONNA G, GIORDANO D, et al. Tables of internal partition functions and thermodynamic properties of high-temperature Mars-atmosphere species from 50K to 50000K: ESA STR-246[R]. Noordwijk: European Space Agency Publication Division, 2005.
9 LIU Y, SHAKIB F, VINOKUR M. A comparison of internal energy calculation methods for diatomic molecules[C]∥28th Aerospace Sciences Meeting. Reston: AIAA, 1990: 351.
10 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996.
  DONG W Z. Numerical calculation and analysis of the influence of thermochemical non-equilibrium effect on hypersonic flow[D].Beijing: Beihang University, 1996 (in Chinese).
11 刘庆宗. 探测器进入火星大气热化学非平衡流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 2015.
  LIU Q Z. Numerical simulation of thermochemical nonequilibrium flowfield for Mars entry vehicles[D]. Mianyang: China Aerodynamics Research and Devel-opment Center, 2015 (in Chinese).
12 THOMPSON K B, HOLLIS B R, JOHNSTON C O, et al. LAURA users manual: 5.6: NASA/TM-2020-220566[R]. Washington, D.C.: NASA, 2020.
13 TANG C. An Introduction to DPLR: ARC-E-DAA-TN33803[R]. Moffett Field, CA, United States: Aerothermodynamics Branch, Ames Research Center, 2016.
14 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报202142(9): 161-177.
  LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica202142(9): 161-177 (in Chinese).
15 李鹏, 陈坚强, 丁明松, 等. LENS风洞试验返回器模型气动热特性模拟[J]. 航空学报202142(S1): 726400.
  LI P, CHEN J Q, DING M S, et al. Simulation of aero-thermal effects on reentry capsule geometry in LENS wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica202142(S1): 726400 (in Chinese).
16 GOKCEN T. Effects of freestream nonequilibrium on convective heat transfer to a blunt body[C]∥33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995.
17 GOKCEN T. Effects of flowfield nonequilibrium on convective heat transfer to a blunt body[C]∥ 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996.
18 MACLEAN M G, DUFRENE A T, CARR Z R, et al. Measurements and analysis of Mars entry, decent, and landing aerothermodynamics at flight-duplicated enthalpies in LENS-XX expansion tunnel[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
19 HOLLIS B R, PRABHU D K, MACLEAN M, et al. Blunt-body aerothermodynamic database from high-enthalpy carbon-dioxide testing in an expansion tunnel[J]. Journal of Thermophysics and Heat Transfer201731(3): 712-731.
20 LI P, CHEN J Q, DING M S, et al. A multi-stage coupling adaptive method for thermochemical nonequilibrium gas[J]. Computers & Fluids2023261: 105916.
21 VINCENTI W G, KRUGER C H. Introduction to phys-ical gas dynamics[M]. Malabar: Krieger, 1965.
22 GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium: NASA TP-2867[R]. Washington, D.C.: NASA, 1989.
23 DUNN M G, KANG S W. Theoretical and experimental studies of reentry plasmas: NASA-CR-2232[R]. Wash-ington, D.C.: NASA, 1973.
24 SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
25 李鹏, 梅杰, 江涛, 等. 一种化学非平衡气体热力学平衡能量体系改进方法及系统: ZL202311316807.1[P]. 2024-01-23.
  LI P, MEI J, JIANG T, et al. An improved method and system for the thermochemical equilibrium energy system of chemical non-equilibrium gases: ZL202311316807.1[P]. 2024-01-23 (in Chinese).
文章导航

/