上层大气层飞行器研究进展及气动技术挑战
收稿日期: 2024-01-29
修回日期: 2024-03-21
录用日期: 2024-04-16
网络出版日期: 2024-04-30
基金资助
中国博士后科学基金(2023M741912)
Spacecraft in upper atmosphere: Research development and aerodynamic challenges
Received date: 2024-01-29
Revised date: 2024-03-21
Accepted date: 2024-04-16
Online published: 2024-04-30
Supported by
China Postdoctoral Science Foundation(2023M741912)
上层大气层飞行器的研究,不但能够促进上层大气层空气动力学这一新兴学科的发展,还能实现100~300 km上层大气层空域的开发利用,推动地球观测、通信等关系民生和国防的重大科技进步,填补此空域长期机动飞行的飞行器空白。分析了上层大气层飞行器相关的研究态势,概述和总结了现有的研究进展,指出气动设计和推进系统方面需要突破的上层大气与飞行器表面相互作用准确建模技术、吸气式电推进系统气体收集压缩器高性能进气道通用化设计技术、吸气式电推进系统电离加速推进器的高效率电离和加速技术等关键技术挑战,并提出了潜在的解决方案,以便为相关领域的科技工作者开展原创研究、集智攻关提供参考。
靳旭红 , 黄飞 , 张俊 , 王学德 , 程晓丽 , 沈清 . 上层大气层飞行器研究进展及气动技术挑战[J]. 航空学报, 2024 , 45(22) : 30254 -030254 . DOI: 10.7527/S1000-6893.2024.30254
Research into spacecraft in the upper atmosphere can not only contribute to the development of upper-atmosphere aerodynamics but also exploit the upper atmosphere ranged from 100 km to 300 km, consequently making significant progress in such military and civilian technology as earth observation and radio communication, and filling the void that there is not yet long-term and maneuverable spacecraft operating in the upper atmosphere. This paper provides a comprehensive review of research situation and development related to the spacecraft in the upper atmosphere, by highlighting the three technique challenges involved in aerodynamic design and propulsion system, namely accurate modelling of the interaction of upper atmosphere with spacecraft surface, wide-range design of efficient inlet for gas collection and compression in the Air-Breathing Electric Propulsion (ABEP) system, and efficient ionization and acceleration in the ABEP system subjected to limited energy source. Moreover, some possible solutions have been proposed to overcome these challenges. Comments have been provided, when possible, to help the reader to identify present development and future challenges for spacecraft in the upper atmosphere with regards to aerodynamic design and propulsion. This review aims at providing some reference for researchers in related fields, thereby facilitating original research and collaborative problem-solving efforts.
1 | 中国科协. 中国科协发布2023重大科学问题、工程技术难题和产业技术问题[EB/OL]. (2023-10-23) [2024-01-28]. . |
China Association for Science and Technology. China Association for Science and Technology unveils top science, engineering, and industrial challenges of 2023[EB/OL]. (2023-10-23) [2024-01-28]. (in Chinese). | |
2 | CHEN Z, HUANG F, JIN X H, et al. A novel lightweight aerodynamic design for the wings of hypersonic vehicles cruising in the upper atmosphere[J]. Aerospace Science and Technology, 2021, 109: 106418. |
3 | 沈清, 黄飞, 程晓丽, 等. 飞行器上层大气层空气动力特性探讨[J]. 气体物理, 2021, 6(1): 1-9. |
SHEN Q, HUANG F, CHENG X L, et al. On characteristics of upper atmosphere aerodynamics of flying vehicles[J]. Physics of Gases, 2021, 6(1): 1-9 (in Chinese). | |
4 | JACKSON S W, MARSHALL R. Conceptual design of an air-breathing electric thruster for CubeSat applications[J]. Journal of Spacecraft and Rockets, 2017, 55(3): 632-639. |
5 | GARRIGUES L. Computational study of Hall-effect thruster with ambient atmospheric gas as propellant[J]. Journal of Propulsion and Power, 2012, 28(2): 344-354. |
6 | CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences, 2020, 117: 100619. |
7 | WALSH J, BERTHOUD L, ALLEN C. Drag reduction through shape optimisation for satellites in Very Low Earth Orbit[J]. Acta Astronautica, 2021, 179: 105-121. |
8 | GONZALO J, LóPEZ D, DOMíNGUEZ D, et al. On the capabilities and limitations of high altitude pseudo-satellites[J]. Progress in Aerospace Sciences, 2018, 98: 37-56. |
9 | CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research)[J]. Acta Astronautica, 2021, 180: 85-99. |
10 | HILD F, TRAUB C, PFEIFFER M, et al. Optimisation of satellite geometries in Very Low Earth Orbits for drag minimisation and lifetime extension[J]. Acta Astronautica, 2022, 201: 340-352. |
11 | 唐绍锋, 张静. 世界主要空天飞行器研制情况及未来发展趋势[J]. 国际太空, 2017(10): 30-37. |
TANG S F, ZHANG J. Development status and trend of the world’s major aerospace vehicles[J]. Space International, 2017(10): 30-37 (in Chinese). | |
12 | MOSTAZA PRIETO D, GRAZIANO B P, ROBERTS P C E. Spacecraft drag modelling[J]. Progress in Aerospace Sciences, 2014, 64: 56-65. |
13 | 张俊, 蒋亦凡, 陈松, 等. 超低轨卫星气动阻力计算与减阻设计研究综述[J]. 航空学报, 2024, 45(20): 029796. |
ZHANG J, JIANG Y F, CHEN S, et al. Overview of aerodynamic drag calculation and reduction design for Very Low Earth Orbit satellites[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 029796 (in Chinese). | |
14 | 袁春柱, 张强, 傅丹膺, 等. 超低轨道卫星技术发展与展望 [J]. 航天器工程, 2021, 30(6): 89-99. |
YUAN C Z, ZHANG Q, FU D Y, et al. Prospect analysis on development and application of ultra-low orbit satellite technology[J]. Spacecraft Engineering, 2021, 30(6): 89-99. (in Chinese) | |
15 | RUMMEL R, YI W Y, STUMMER C. GOCE gravitational gradiometry[J]. Journal of Geodesy, 2011, 85(11): 777-790. |
16 | 何慧东. 日本 “超低轨道技术实验卫星” 任务及应用[J]. 国际太空, 2018(9): 50-53. |
HE H D. Japan’s super low altitude test satellite mission and application[J]. Space International, 2018(9): 50-53 (in Chinese). | |
17 | VALLADO D, FINKLEMAN D. A critical assessment of satellite drag and atmospheric density modeling[C]∥AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston: AIAA, 2008. |
18 | 靳旭红, 黄飞, 程晓丽, 等. 超低地球轨道卫星大气阻力预测与影响因素分析[J]. 清华大学学报(自然科学版), 2020, 60(3): 219-226. |
JIN X H, HUANG F, CHENG X L, et al. Atmospheric drag on satellites flying in lower low-earth orbit[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3): 219-226 (in Chinese). | |
19 | HE C Y, YANG Y, CARTER B, et al. Review and comparison of empirical thermospheric mass density models[J]. Progress in Aerospace Sciences, 2018, 103: 31-51. |
20 | COESA. U.S. Standard atmosphere, 1976: NASA-TM-X-74335[R]. Washington, D.C.: U.S. Government Printing Office, 1976. |
21 | JACCHIA L G. Static diffusion models of the upper atmosphere with empirical temperature profiles[J]. Smithsonian Contributions to Astrophysics, 1965, 8(9): 213-257. |
22 | PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research (Space Physics), 2002, 107(A12): 1468. |
23 | BOWMAN B, TOBISKA W K, MARCOS F, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]∥AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston: AIAA, 2008. |
24 | BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5: A1. |
25 | LIVADIOTTI S, CRISP N H, ROBERTS P C E, et al. A review of gas-surface interaction models for orbital aerodynamics applications[J]. Progress in Aerospace Sciences, 2020, 119: 100675. |
26 | TITOV E, BURT J, JOSYULA E. Satellite drag uncertainties associated with atmospheric parameter variations at low earth orbits[J]. Journal of Spacecraft and Rockets, 2014, 51(3): 884-892. |
27 | COOK G E. Satellite drag coefficients[J]. Planetary and Space Science, 1965, 13(10): 929-946. |
28 | MOE K, MOE M M. Gas–surface interactions and satellite drag coefficients[J]. Planetary and Space Science, 2005, 53(8): 793-801. |
29 | MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170: 231-256. |
30 | NOCILLA S. Basic concepts in the surface interaction of free-molecular flows or molecular beams[J]. Meccanica, 1967, 2(1): 34-40. |
31 | HURLBUT F C, SHERMAN F S. Application of the nocilla wall reflection model to free-molecule kinetic theory[J]. Physics of Fluids, 1968, 11(3): 486-496. |
32 | CERCIGNANI C, LAMPIS M. Kinetic models for gas-surface interactions[J]. Transport Theory and Statistical Physics, 1971, 1(2): 101-114. |
33 | LORD R G. Some extensions to the Cercignani–Lampis gas–surface scattering kernel[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(4): 706-710. |
34 | LORD R G. Some further extensions of the Cercignani-Lampis gas-surface interaction model[J]. Physics of Fluids, 1995, 7(5): 1159-1161. |
35 | GOODMAN F O. On the theory of accommodation coefficients—IV. Simple distribution function theory of gas-solid interaction systems?[J]. Journal of Physics and Chemistry of Solids, 1965, 26(1): 85-105. |
36 | LOGAN R M, STICKNEY R E. Simple classical model for the scattering of gas atoms from a solid surface[J]. The Journal of Chemical Physics, 1966, 44(1): 195-201. |
37 | LOGAN R M, KECK J C. Classical theory for the interaction of gas atoms with solid surfaces[J]. The Journal of Chemical Physics, 1968, 49(2): 860-876. |
38 | TULLY J C. Washboard model of gas-surface scattering[J]. The Journal of Chemical Physics, 1990, 92(1): 680-686. |
39 | 靳旭红, 黄飞, 程晓丽, 等. Maxwell气固相互作用模型对稀薄高超声速凹腔绕流流动特征和热环境的影响[J]. 航空学报, 2021, 42(3): 124118. |
JIN X H, HUANG F, CHENG X L, et al. Effect of Maxwell gas-surface interaction models on flow characteristics and thermodynamic properties of rarefied hypersonic cavity flows[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124118 (in Chinese). | |
40 | PADILLA J F, BOYD I D. Assessment of gas-surface interaction models for computation of rarefied hypersonic flow[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(1): 96-105. |
41 | HART K A, DUTTA S, SIMONIS K, et al. Analytically-derived aerodynamic force and moment coefficients of resident space objects in free-molecular flow[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2014. |
42 | PARDINI C, ANSELMO L, MOE K, et al. Drag and energy accommodation coefficients during sunspot maximum[J]. Advances in Space Research, 2010, 45(5): 638-650. |
43 | JIN X H, WANG B, CHENG X L, et al. The effects of Maxwellian accommodation coefficient and free-stream Knudsen number on rarefied hypersonic cavity flows[J]. Aerospace Science and Technology, 2020, 97: 105577. |
44 | 靳旭红, 黄飞, 程晓丽, 等. 超低轨航天器气动特性快速预测的实验粒子Monte Carlo方法[J]. 航空学报, 2017, 38(5): 105-114. |
JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo method for rapid prediction of aerodynamic properties of spacecraft in lower LEO[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 105-114 (in Chinese). | |
45 | JIN X H, HUANG F, CHENG X L, et al. Monte Carlo simulation for aerodynamic coefficients of satellites in Low-Earth Orbit[J]. Acta Astronautica, 2019, 160: 222-229. |
46 | LIANG Z, KEBLINSKI P. Parametric studies of the thermal and momentum accommodation of monoatomic and diatomic gases on solid surfaces?[J]. International Journal of Heat and Mass Transfer, 2014, 78: 161-169. |
47 | SUN J, LI Z X. Effect of gas adsorption on momentum accommodation coefficients in microgas flows using molecular dynamic simulations[J]. Molecular Physics, 2008, 106(19): 2325-2332. |
48 | MILLER S K R, BANKS B A, WATERS D L. Investigation into the differences between atomic oxygen erosion yields of materials in ground-based facilities and LEO[J]. High Performance Polymers, 2008, 20(4-5): 523-534. |
49 | YAMAGUCHI H, MATSUDA Y, NIIMI T. Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients[J]. Physical Review E, 2017, 96(1-1): 013116. |
50 | YOUSEFI-NASAB S, SAFDARI J, KARIMI-SABET J, et al. Molecular dynamics simulations on the scattering of heavy gases on the composite surfaces[J]. Vacuum, 2021, 183: 109864. |
51 | REINHOLD J, VELTZKE T, WELLS B, et al. Molecular dynamics simulations on scattering of single Ar, N2, and CO2 molecules on realistic surfaces[J]. Computers & Fluids, 2014, 97: 31-39. |
52 | KAMMARA K K, KUMAR R. Development of empirical relationships for surface accommodation coefficients through investigation of nano-poiseuille flows using molecular dynamics method[J]. Microfluidics and Nanofluidics, 2020, 24(9): 70. |
53 | AGRAWAL A, PRABHU S V. Survey on measurement of tangential momentum accommodation coefficient[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2008, 26(4): 634-645. |
54 | GREIG A, BIRZER C H, ARJOMANDI M. Atmospheric plasma thruster: Theory and concept[J]. AIAA Journal, 2012, 51(2): 362-371. |
55 | NISHIYAMA K. Air breathing ion engine concept[C]∥54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston: AIAA, 2003:IAC-03-S.4.02. |
56 | JIN X H, CHENG X L, HUANG Y Q, et al. Numerical analysis of inlet flows at different altitudes in the upper atmosphere[J]. Physics of Fluids, 2023, 35(9): 093605. |
57 | ANDREUSSI T, FERRATO E, PAISSONI C A, et al. The AETHER project: Development of air-breathing electric propulsion for VLEO missions[J]. CEAS Space Journal, 2022, 14(4): 717-740. |
58 | ROMANO F, MASSUTI-BALLESTER B, BINDER T, et al. System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster?[J]. Acta Astronautica, 2018, 147: 114-126. |
59 | ANDREUSSI T, FERRATO E, PIRAGINO A, et al. Development and experimental validation of a Hall effect thruster RAM-EP Concept[C]∥35th International Electric Propulsion Conference. Seattle: Electric Rocket Propulsion Society, 2017: IEPC-2017– 377. |
60 | SINGH L A, WALKER M L R. A review of research in low earth orbit propellant collection[J]. Progress in Aerospace Sciences, 2015, 75: 15-25. |
61 | BERNER F, CAMAC M. Air scooping vehicle[J]. Planetary and Space Science, 1961, 4: 159-183. |
62 | DEMETRIADES S T. A novel system for space flight using a propulsive fluid accumulator[J]. Journal of the British Interplanetary Society, 1959, 17: 114-119. |
63 | 靳旭红, 程晓丽, 沈清, 等. 吸气式电推进系统进气道气体流动数值分析[J]. 中国科学: 物理学 力学 天文学, 2024, 54(3): 234712. |
JIN X H, CHENG X L, SHEN Q, et al. Numerical analysis of inlet flows in an atmosphere-breathing electric propulsion system[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(3): 234712 (in Chinese). | |
64 | WU J J, ZHENG P, ZHANG Y, et al. Recent development of intake devices for atmosphere-breathing electric propulsion system[J]. Progress in Aerospace Sciences, 2022, 133: 100848. |
65 | ANDREUSSI T, FERRATO E, GIANNETTI V. A review of air-breathing electric propulsion: from mission studies to technology verification[J]. Journal of Electric Propulsion, 2022, 1(1): 31. |
66 | ROMANO F, ESPINOSA-OROZCO J, PFEIFFER M, et al. Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP)[J]. Acta Astronautica, 2021, 187: 225-235. |
67 | TAGAWA M, YOKOTA K, NISHIYAMA K, et al. Experimental study of air breathing ion engine using laser detonation beam source[J]. Journal of Propulsion and Power, 2013, 29(3): 501-506. |
68 | SHODA K, KANO N, JOTAKI Y, et al. Anisotropic molecular scattering at microstructured surface for rarefied gas compression inside air breathing ion engine[J]. CEAS Space Journal, 2023, 15(3): 403-411. |
69 | ROMANO F, BINDER T, HERDRICH G, et al. Air-intake design investigation for an air-breathing electric propulsion system[C]∥34th International Electric Propulsion Conference. Seattle: Electric Rocket Propulsion Society, 2015: IEPC-2015- 269. |
70 | BINDER T, BOLDINI P C, ROMANO F, et al. Transmission probabilities of rarefied flows in the application of atmosphere-breathing electric propulsion[C]∥30th International Symposium on Rarefied Gas Dynamics. Salt Lake City: AIP, 2016. |
71 | DI CARA D, GONZALEZ DEL AMO J, SANTOVICENZO A, et al. RAM Electric Propulsion for Low Earth Orbit Operation: An ESA study[C]∥30th International Electric Propulsion Conference. Seattle: Electric Rocket Propulsion Society, 2007: IEPC-2007- 162. |
72 | BARRAL S, CIFALI G, ALBERTONI R, et al. Conceptual design of an air-breathing electric propulsion system[C]∥34th International Electric Propulsion Conference. Seattle: Electric Rocket Propulsion Society, 2015: IEPC-2015- 271. |
73 | ZHENG P, WU J J, WU B Q, et al. Design and numerical investigation on the intake of atmosphere-breathing electric propulsion[J]. Acta Astronautica, 2021, 188: 215-228. |
74 | ZHENG P, WU J J, ZHANG Y, et al. Design and Optimization of vacuum Intake for Atmosphere-Breathing electric propulsion (ABEP) system[J]. Vacuum, 2022, 195: 110652. |
75 | ZHENG P, WU J J, ZHANG Y, et al. Optimization investigation of vacuum air-intake for atmosphere-breathing electric propulsion system[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(7): 1253-1268. |
76 | LI Y W, CHEN X, LI D M, et al. Design and analysis of vacuum air-intake device used in air-breathing electric propulsion[J]. Vacuum, 2015, 120: 89-95. |
77 | JIN X H, MIAO W B, CHENG X L, et al. Monte Carlo simulation of inlet flows in atmosphere-breathing electric propulsion[J]. AIAA Journal, 2024, 62(2): 518-529. |
78 | 周靖云, 靳旭红, 程晓丽, 等. 气固相互作用对吸气式电推进系统进气道性能的影响[J]. 清华大学学报(自然科学版), 2024, 64(9): 1536-1546. |
ZHOU J Y, JIN X H, CHENG X L, et al. Effects of gas-surface interaction on the inlet performance of an atmosphere-breathing electric propulsion system[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(9): 1536-1546 (in Chinese). | |
79 | FERRATO E, ANDREUSSI T. Atmospheric propellant fed Hall thruster discharges: 0D-hybrid model and experimental results[J]. Plasma Sources Science and Technology, 2022, 31(7): 075003. |
80 | CANDLER G V. Rate-dependent energetic processes in hypersonic flows[C]∥43rd Fluid Dynamics Conference. Reston: AIAA, 2013. |
81 | GURCIULLO A, FABRIS A L, CAPPELLI M A. Ion plume investigation of a Hall effect thruster operating with Xe/N2 and Xe/air mixtures[J]. Journal of Physics D: Applied Physics, 2019, 52(46): 464003. |
82 | CHARLES C, BOSWELL R W, LAINE R, et al. An experimental investigation of alternative propellants for the Helicon double layer thruster[J]. Journal of Physics D: Applied Physics, 2008, 41(17): 175213. |
83 | MARCHIONI F, CAPPELLI M A. Extended channel Hall thruster for air-breathing electric propulsion[J]. Journal of Applied Physics, 2021, 130(5): 053306. |
84 | ANDREUSSI T, FERRATO E, PAISSONI C A, et al. Air breathing electric THrustER: Towards very low earth orbit missions[C]∥1st International Symposium on Very Low Earth Orbit Missions And Technologies. Duba: Discoverer, 2021. |
85 | HRUBY V, HOHMAN K, SZABO J. Air breathing hall effect thruster design studies and experiments [C]∥37th International Electric Propulsion Conference. Seattle: Electric Rocket Propulsion Society, 2022: IEPC-2022- 446. |
86 | MIYA Y, NISHIYAMA K. Performance evaluation of a plasma generator and ion optics for air-breathing ion engine[J]. CEAS Space Journal, 2022, 14(4): 749-755. |
87 | ROMANO F, CHAN Y A, HERDRICH G, et al. RF Helicon-based Inductive Plasma Thruster (IPT) Design for an Atmosphere-Breathing Electric Propulsion system (ABEP)[J]. Acta Astronautica, 2020, 176: 476-483. |
88 | ROMANO F, HERDRICH G, CHAN Y A, et al. Design of an intake and a thruster for an atmosphere-breathing electric propulsion system[J]. CEAS Space Journal, 2022, 14(4): 707-715. |
89 | EROFEEV A I, NIKIFOROV A P, POPOV G A, et al. Air-breathing ramjet electric propulsion for controlling low-orbit spacecraft motion to compensate for aerodynamic drag[J]. Solar System Research, 2017, 51(7): 639-645. |
90 | CHERNYSHEV S L, LOKTIONOV E Y, SAGALAKOV A E, et al. Prospects of infrared lasers in air-breathing electric thrusters[J]. Doklady Physics, 2021, 66(11): 307-310. |
91 | SHABSHELOWITZ A, GALLIMORE A D, PETERSON P Y. Performance of a helicon hall thruster operating with xenon, argon, and nitrogen[J]. Journal of Propulsion and Power, 2014, 30(3): 664-671. |
92 | HU P, SHEN Y, YAO Z P, et al. Study of multi-cusped plasma thruster applied to air-breathing electric propulsion[J]. Vacuum, 2021, 190: 110275. |
/
〈 |
|
〉 |