考虑固化残余应力影响的Z-pin增韧复材压缩性能预测方法
收稿日期: 2023-12-12
修回日期: 2024-01-15
录用日期: 2024-04-19
网络出版日期: 2024-04-30
基金资助
国家重点研发计划(2021YFF0500100);国家自然科学基金(12220101002)
Numerical study on curing residual stresses in compression of Z-pinned composites
Received date: 2023-12-12
Revised date: 2024-01-15
Accepted date: 2024-04-19
Online published: 2024-04-30
Supported by
National Key Research and Development Program of China(2021YFF0500100);National Natural Science Foundation of China(12220101002)
Z-pin增韧技术可有效提高复合材料层间性能,但pin针的植入会引起材料纤维发生变向,造成富树脂区,降低面内性能。本文提出了一种考虑固化残余应力影响的Z-pin增韧复合材料面内压缩性能的预测方法。通过分析Z-pin增韧结构的细观形貌,建立了代表性单胞模型;充分考虑各组分材料的固化时变特性,建立了Z-pin增韧结构下的热-力-化学多场耦合模型;将前期计算得到的固化残余应力场作为预定义场带入面内压缩性能计算,得到的仿真结果与实验吻合度高。研究发现,固化过程中Z-pin周围会聚集大量残余应力,因而在压缩载荷下,Z-pin周围的材料性能较弱会最先产生裂纹缺陷,并逐渐向富树脂区扩展;纤维变向、富树脂区和固化残余应力的存在会显著降低增韧后复合材料的面内压缩性能。
张胜男 , 许英杰 , 张卫红 . 考虑固化残余应力影响的Z-pin增韧复材压缩性能预测方法[J]. 航空学报, 2024 , 45(20) : 429966 -429966 . DOI: 10.7527/S1000-6893.2024.29966
The Z-pinning technology can effectively improve the interlaminar properties of composite materials, yet the implantation of Z-pins causes fiber distortion, resin-rich zones, and reduced in-plane properties. This paper proposes a numerical method to predict the in-plane compressive properties of Z-pinned composites, with curing effects into consideration. A representative unit cell model is established by analyzing the fine morphology of the Z-pinned structure. Considering the time-dependent properties of the cure process, we develop a coupled thermo-chemo-mechanical multi-field model for Z-pinned structures. The residual stress field obtained from the previous calculation is introduced as a predefined field in the calculation of in-plane compressive performance, and the simulated results are in good agreement with the experimental results. It is found that a large amount of residual stress accumulates around the Z-pin during the cure. Therefore, under compressive loads, weaker material properties around the Z-pin will first develop crack defects, gradually extending to the resin-rich regions. The presence of fiber orientation, resin-rich regions, and cure-induced residual stresses significantly reduce the in-plane compressive performance of Z-pinned composites.
1 | LIU B, HAN Q, ZHONG X P, et al. The impact damage and residual load capacity of composite stepped bonding repairs and joints[J]. Composites Part B: Engineering, 2019, 158: 339-351. |
2 | ZHANG S N, LI Y C, LUO M, et al. Modelling of nonlinear and dual-modulus characteristics and macro-orthogonal cutting simulation of unidirectional Carbon/Carbon composites[J]. Composite Structures, 2022, 280: 114928. |
3 | MOURITZ A P. Review of z-pinned laminates and sandwich composites[J]. Composites Part a-Applied Science and Manufacturing, 2020, 139(198): 106128. |
4 | HOFFMANN J, SABBAN J, SCHARR G. Pullout performance of circumferentially notched z-pins in carbon fiber reinforced laminates[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 197-202. |
5 | YASAEE M, BIGG L, MOHAMED G, et al. Influence of Z-pin embedded length on the interlaminar traction response of multi-directional composite laminates[J]. Materials & Design, 2017, 115: 26-36. |
6 | STEEVES C A, FLECK N A. In-plane properties of composite laminates with through-thickness pin reinforcement[J]. International Journal of Solids and Structures, 2006, 43(10): 3197-3212. |
7 | CHANG P, MOURITZ A P, COX B N. Properties and failure mechanisms of pinned composite lap joints in monotonic and cyclic tension[J]. Composites Science and Technology, 2006, 66(13): 2163-2176. |
8 | HOFFMANN J, SCHARR G. Mechanical properties of composite laminates reinforced with rectangular z-pins in monotonic and cyclic tension[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 163-170. |
9 | DING A X, LI S X, SUN J X, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures, 2016, 136: 34-43. |
10 | SWEETING R D, THOMSON R S. The effect of thermal mismatch on Z-pinned laminated composite structures[J]. Composite Structures, 2004, 66(1-4): 189-195. |
11 | ZHANG S N, XU Y J, ZHANG W H, et al. Micro-mechanical modeling study of the influence of cure process on the interfacial cracking of Z-pinned laminates[J]. Composite Structures, 2021, 280(4): 114889. |
12 | ZHANG S N, XU Y J, ZHANG W H. Experimental and numerical study on the influence of cure process on the bridging traction mechanism of z-pins[J]. International Journal of Mechanical Sciences, 2023, 245: 108096. |
13 | BIANCHI F, ZHANG X. A cohesive zone model for predicting delamination suppression in z-pinned laminates[J]. Composites Science and Technology, 2011, 71(16): 1898-1907. |
14 | SIMONOVSKI I, CIZELJ L. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates[J]. Nuclear Engineering and Design, 2015, 283: 139-147. |
15 | ZHANG S N, XU Y J, ZHANG W H. A novel micromechanical model to study the influence of cure process on the in-plane tensile properties of z-pinned laminates[J]. Composite Structures, 2022, 300: 116156. |
16 | JOHNSTON A, VAZIRI R, POURSARTIP A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469. |
17 | MANOJ KUMAR B. Micromechanics of a lamina, composite structures, design, mechanics, analysis, manufacturing, and testing[M]. Boca Raton: CRC Press; 2017. |
18 | SHIMBO M, OCHI M, SHIGETA Y. Shrinkage and internal stress during curing of epoxide resins[J]. Journal of Applied Polymer Science, 1981, 26(7): 2265-2277. |
19 | ABOU MSALLEM Y, JACQUEMIN F, BOYARD N, et al. Material characterization and residual stresses simulation during the manufacturing process of epoxy matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(1): 108-115. |
20 | MAIARù M, D’MELLO R J, WAAS A M. Characterization of intralaminar strengths of virtually cured polymer matrix composites[J]. Composites Part B: Engineering, 2018, 149(1072): 285-295. |
21 | FU C, WANG X. Micro-mechanical analysis of matrix crack-induced delamination in cross-ply laminates in tension[J]. Composite Structures, 2020, 243: 112202. |
22 | LIU K S, TSAI S W. A progressive quadratic failure criterion for a laminate [J]. Composites Science and Technology, 1998, 58: 1023-1032. |
23 | BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439-449. |
24 | GU J F, CHEN P H. Some modifications of Hashin’s failure criteria for unidirectional composite materials[J]. Composite Structures, 2017, 182(4): 143-152. |
25 | STEEVES C A, FLECK N A. In-plane properties of composite laminates with through-thickness pin reinforcement[J]. International Journal of Solids and Structures, 2006, 43(10): 3197-3212. |
26 | TRAN T D, KELLY D, PRUSTY B G, et al. Micromechanical modelling for onset of distortional matrix damage of fiber reinforced composite materials[J]. Composite Structures, 2012, 94(2): 745-757. |
27 | HUI X Y, XU Y J, ZHANG W H. An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites[J]. Composite Structures, 2021, 263(5): 113681. |
28 | CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438. |
29 | HOU Y L, MENG L, LI G H, et al. A novel multiscale modeling strategy of the low-velocity impact behavior of plain woven composites[J]. Composite Structures, 2021, 274(11): 114363. |
30 | HOFFMANN J, SCHARR G. Compression properties of composite laminates reinforced with rectangular z-pins[J]. Composites Science and Technology, 2018, 167: 463-469. |
/
〈 |
|
〉 |