航天电静液伺服系统复合自适应跟踪控制
收稿日期: 2024-01-15
修回日期: 2024-03-06
录用日期: 2024-04-10
网络出版日期: 2024-04-25
基金资助
航天伺服驱动与传动技术实验室开放基金(LASAT-2022-A01-03);国家自然科学基金(52375452);航空科学基金(2023M0440Q3001)
Composite adaptive tracking control of aerospace electro⁃hydrostatic actuator servo system
Received date: 2024-01-15
Revised date: 2024-03-06
Accepted date: 2024-04-10
Online published: 2024-04-25
Supported by
Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(LASAT-2022-A01-03);National Natural Science Foundation of China(52375452);Aeronautical Science Foundation of China(2023M0440Q3001)
针对电静液伺服系统自适应控制过程中存在参数收敛速度慢、跟踪性能差、参数辨识过程中持续激励条件苛刻的问题,进行了复合学习自适应位置跟踪控制算法研究。依据电静液伺服系统的动力学模型,采用反步控制和复合学习的方式设计自适应跟踪控制器,由跟踪误差和预测误差同时驱动参数估计,从而在间歇激励的条件下保证跟踪误差和参数估计误差的收敛性,通过李雅普诺夫理论证明了控制器的一致稳定性。仿真及实验结果表明,相比于传统自适应控制,该方法不需要油缸加速度信号,且表现出更好的轨迹跟踪效果,经过复合学习,系统跟踪误差下降了50%,并且表现出更高的鲁棒性。
窦振华 , 国凯 , 黄晓明 , 孙杰 , 左哲清 , 赵守军 . 航天电静液伺服系统复合自适应跟踪控制[J]. 航空学报, 2024 , 45(15) : 630160 -630160 . DOI: 10.7527/S1000-6893.2024.30160
In addressing challenges such as slow parameter convergence, suboptimal tracking performance, and rigorous persistent-excitation conditions encountered in the adaptive control methods within electro-hydrostatic actuator servo system, this study explores the development of a composite learning adaptive position tracking control algorithm. Leveraging the dynamics model of the electro-hydrostatic actuator servo system, the adaptive tracking controller is formulated through a combination of backstepping control and composite learning. Notably, parameter estimation is simultaneously guided by both tracking error and prediction error, ensuring convergence of both the tracking error and parameter estimation error under interval-excitation conditions, and the consistent stability of the controller is proved by the Lyapunov theory. The simulation and experimental findings indicate that, in contrast to traditional adaptive control, the proposed method eliminates the need for a cylinder acceleration signal and demonstrating superior trajectory tracking. Following the implementation of composite learning, the system's tracking error registers a significant 50% reduction and demonstrating heightened resilience.
1 | ALLE N, HIREMATH S S, MAKARAM S, et al. Review on electro hydrostatic actuator for flight control[J]. International Journal of Fluid Power, 2016, 17(2): 125-145. |
2 | 康荣杰, 焦宗夏, Jean Charles Mare,等. 电动静液作动器非线性框图建模与鲁棒控制方法[J]. 航空学报, 2009, 30(3): 518-525. |
KANG R J, JIAO Z X, MARE J C, et al. Nonlinear block diagram model and robust control of electro-hydrostatic actuator[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 518-525 (in Chinese). | |
3 | YAO J Y, DENG W X. Active disturbance rejection adaptive control of hydraulic servo systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8023-8032. |
4 | KIM W, WON D. Nonlinear position control with nonlinear coordinate transformation using only position measurement for single-rod electro-hydrostatic actuator[J]. Mathematics, 2020, 8(8): 1273. |
5 | YAO J Y, JIAO Z X, MA D W. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6285-6293. |
6 | 彭辉, 王军政, 沈伟, 等. 带补偿因子的双模糊控制在电液伺服阀控非对称缸系统上的应用研究[J]. 机械工程学报, 2017, 53(24): 184-192. |
PENG H, WANG J Z, SHEN W, et al. Double fuzzy control with compensating factor for electronic-hydraulic servovalve-controlled system[J]. Journal of Mechanical Engineering, 2017, 53(24): 184-192 (in Chinese). | |
7 | 曾乐, 谭建平, 许文斌, 等. 阀控非对称缸系统神经网络多逆模型切换控制研究[J]. 西安交通大学学报, 2019, 53(12): 153-160. |
ZENG L, TAN J P, XU W B, et al. Multi-inverse model switching control for valve-controlled asymmetric cylinder systems based on neural network [J]. Journal of Xi’an Jiaotong University, 2019, 53(12): 153-160 (in Chinese). | |
8 | GUO K, PAN Y, YU H. Composite learning robot control with friction compensation: a neural network-based approach[J]. IEEE Transactions on Industrial Electronics, 2018, 66(10): 7841-7851. |
9 | JIN X L, ZHU S Q, ZHU X Q, et al. Single-input adaptive fuzzy sliding mode control of the lower extremity exoskeleton based on human–robot interaction[J]. Advances in Mechanical Engineering, 2017, 9(2): 4345-4352. |
10 | LEE S S, PARK J K. Design of power system stabilizer using observer/sliding mode, observer/sliding mode-model following and H∞/sliding mode controllers for small-signal stability study[J]. International Journal of Electrical Power & Energy Systems, 1998, 20(8): 543-553. |
11 | KADDISSI C, KENNE J P, SAAD M. Identification and real-time control of an electrohydraulic servo system based on nonlinear backstepping[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(1): 12-22. |
12 | 刘乐, 蔺明浩, 李晓刚, 等. 基于模糊干扰观测器的电液伺服位置系统自适应反步控制[J]. 电机与控制学报, 2019, 23(12): 143-150, 158. |
LIU L, LIN M H, LI X G, et al. Adaptive backstepping control for the electro-hydraulic servo position system based on fuzzy disturbance observers[J]. Electric Machines and Control, 2019, 23(12): 143-150, 158 (in Chinese). | |
13 | HELIAN B, CHEN Z, YAO B. Precision motion control of a servomotor-pump direct-drive electrohydraulic system with a nonlinear pump flow mapping[J]. IEEE Transactions on Industrial Electronics, 2019, 67(10): 8638-8648. |
14 | GUO K, WEI J, TIAN Q. Disturbance observer based position tracking of electro-hydraulic actuator[J]. Journal of Central South University, 2015, 22(6): 2158-2165. |
15 | GUO K, XU Y, LI J. Thrust force allocation method for shield tunneling machines under complex load conditions[J]. Automation in Construction, 2018, 96: 141-147. |
16 | 那靖, 郑昂, 黄英博. 非线性严格反馈系统自适应非反步输出反馈控制[J]. 控制与决策, 2022, 37(9): 2425-2432. |
NA J, ZHENG A, HUANG Y B. Adaptive non-backstepping output-feedback control of nonlinear strict-feedback systems[J]. Control and Decision, 2022, 37(9): 2425-2432 (in Chinese). | |
17 | YAO B, BU F, REEDY J, et al. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 79-91. |
18 | 王宣银, 李强, 程佳. 液压Stewart平台基于工作空间综合偏差的同步控制[J]. 航空学报, 2009, 30(4): 719-725. |
WANG X Y, LI Q, CHENG J. Synchronous tracking control for hydraulic Stewart platform based on combination tracking errors in operation workspace[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 719-725 (in Chinese). | |
19 | LIU H M, WANG S P, OUYANG P C. Fault diagnosis in a hydraulic position servo system using RBF neural network[J]. Chinese Journal of Aeronautics, 2006, 19(4): 346-353. |
20 | NA J, YANG J, WU X, et al. Robust adaptive parameter estimation of sinusoidal signals[J]. Automatica, 2015, 53: 376-384. |
21 | WANG J, LI R, ZHANG G, et al. Continuous sliding mode iterative learning control for output constrained MIMO nonlinear systems[J]. Information Sciences, 2020, 67(2):1242-1253. |
22 | 施卉辉, 陈强. 一类不确定系统的自适应滑模迭代学习控制[J]. 控制理论与应用, 2023, 40(7): 1162-1171. |
SHI H H, CHEN Q, et al. Adaptive sliding-mode iterative learning control for a class of uncertain systems[J]. Control Theory & Applications, 2023, 40(7): 1162-1171 (in Chinese). | |
23 | SHOU Y, XU B, PU H, et al. Composite learning control of strict-feedback nonlinear system with unknown control gain function[J]. International Journal of Robust and Nonlinear Control, 2023, 33(13): 7793-7810. |
24 | GUO K, PAN Y, ZHENG D, et al. Composite learning control of robotic systems: a least squares modulated approach[J]. Automatica, 2020, 111: 108612. |
25 | XU B, SUN F C. Composite intelligent learning control of strict-feedback systems with disturbance[J]. IEEE Transactions on Cybernetics, 2018, 48(2): 730-741. |
26 | 韩小霞, 谢建, 冯永保, 等. 基于模型信息的电静液作动器降阶线性自抗扰控制[J]. 控制与决策, 2023, 38(3): 681-689. |
HAN X X, XIE J, FENG Y B, et al. Reduced order linear active disturbance rejection control based on model information of electro-hydrostatic actuator[J]. Control and Decision, 2023, 38(3): 681-689 (in Chinese). | |
27 | GUO K, LI M, SHI W, et al. Adaptive tracking control of hydraulic systems with improved parameter convergence[J]. IEEE Transactions on Industrial Electronics, 2021, 69(7): 7140-7150. |
28 | GUO K, WEI J, FANG J, et al. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer[J]. Mechatronics, 2015, 27: 47-56. |
/
〈 |
|
〉 |