气动噪声专栏

仿生覆羽控制分离剪切流动相干结构试验

  • 刘一宏 ,
  • 马兴宇 ,
  • 潘家腾 ,
  • 姜楠
展开
  • 1.天津大学 机械工程学院 天津市现代工程力学重点实验室,天津 300354
    2.西北工业大学 翼型、叶栅空气动力学国家级重点实验室,西安 710072
    3.中国空气动力研究与发展中心 气动噪声控制重点实验室,绵阳 621000
.E-mail: xingyuma@tju.edu.cn

收稿日期: 2024-02-03

  修回日期: 2024-03-11

  录用日期: 2024-04-03

  网络出版日期: 2024-04-19

基金资助

国家自然科学基金(12372278);翼型、叶栅空气动力学国家级重点实验室稳定支持经费项目(61422010301);气动噪声控制重点实验室开放课题(ANCL20230108);西南交通大学牵引动力国家重点实验室开放课题(TPL2306);中德合作研究小组计划(GZ1575)

Test on controlling coherent structure of separated shear flow by bionic coverts

  • Yihong LIU ,
  • Xingyu MA ,
  • Jiateng PAN ,
  • Nan JIANG
Expand
  • 1.Tianjin Key Laboratory of Modern Engineering Mechanics,School of Mechanical Engineering,Tianjin University,Tianjin 300354,China
    2.National Key Laboratory of Science and Technology on Aerodynamic Design and Research,Northwestern Polytechnical University,Xi’an 710072,China
    3.Key Laboratory of Aerodynamic Noise Control,China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2024-02-03

  Revised date: 2024-03-11

  Accepted date: 2024-04-03

  Online published: 2024-04-19

Supported by

National Natural Science Foundation of China(12372278);the Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research(61422010301);the Open Project Program of the Key Laboratory of Aerodynamic Noise Control(ANCL20230108);the Foundation of State Key Laboratory of Rail Transit Vehicle System(TPL2306);the Sino-German Center for Research Promotion-Mobility Program(GZ1575)

摘要

猫头鹰翅膀上翼面的柔性锯齿形覆羽具有优良的控制流动分离、抑制涡流噪声的效果。通过风洞试验研究了柔性锯齿形覆羽结构控制平面后台阶下游的平行剪切流动中大尺度相干结构的效果。试验中分别采用不同厚度的覆羽装置安装在后台阶流动分离处,随气流自适应振动,采用单丝热线风速仪分别测量流向、法向和展向的速度信号,将控制工况和干净台阶工况的时域和频域结果等进行对比分析。试验结果表明,不同厚度的覆羽装置均有控制平行剪切流动分离、降低湍流脉动强度、抑制剪切层中大尺度相干结构生成的作用。其中,0.2 mm厚度的覆羽在剪切层流动驱动下进行微小振动,受扰动的分离区长度减小约20%,剪切层中心湍流脉动强度降低约30%。小波分析显示,自适应振动具有“振动-梳理”后台阶下游剪切层流动、抑制展向高低速条带结构的生成、降低低频大尺度相干结构占比的作用。研究结果证实了鸟类柔性锯齿形覆羽自适应振动对分离剪切层流动的控制效果,揭示了控制流动分离、抑制涡流噪声的力学机理。

本文引用格式

刘一宏 , 马兴宇 , 潘家腾 , 姜楠 . 仿生覆羽控制分离剪切流动相干结构试验[J]. 航空学报, 2024 , 45(23) : 630284 -630284 . DOI: 10.7527/S1000-6893.2024.30284

Abstract

The flexible serrated coverts on the upper wing of the owl play an effective role in controlling flow separation and reducing acoustic noise. In this paper, wind tunnel experiments were conducted to study the flow control effectiveness of the flexible serrated coverts structures on the large-scale coherent structures in the parallel shear flow downstream of backward-facing step. In the experiment, the bionic coverts of different thicknesses were installed on the step edge, and were driven to adaptively flutter by the air flow. The turbulent velocity in the downstream were measured by the hot wire anemometer, and the coherent features were analyzed in both the time and frequency domains. The results show that the coverts of different thicknesses were capable of controlling flow separation, reducing turbulent fluctuation intensity, and suppressing the generation of the large-scale coherent structures within the shear layer. Among them, the coverts of 0.2 mm show the most effective results, which reduced the separation length by approximately 20% and decreased the turbulent intensity peaks by approximately 30%. Furthermore, wavelet analysis shows that adaptive fluttering motions had the effect of “fluttering-combing” the separated shear layer downstream of backward-facing step, suppressing the spanwise generation of high- and low-speed streaks, and reducing the proportion of low-frequency large-scale coherent structures. The experimental study shows the flow control effect of flexible serrated coverts of birds, and reveals the underlying mechanism of flow separation control and acoustic noise reduction.

参考文献

1 MATLOFF L Y, CHANG E, FEO T J, et al. How flight feathers stick together to form a continuous morphing wing[J]. Science2020367(6475): 293-297.
2 吴康灵, 叶正寅, 叶坤, 等. 鸟类羽毛在气流中变形的力学特性研究[J]. 力学学报202355(4): 874-884.
  WU K L, YE Z Y, YE K, et al. Mechanical characteristics of the deformation of bird feathers in airflow[J]. Chinese Journal of Theoretical and Applied Mechanics202355(4): 874-884 (in Chinese).
3 HARVEY C, GAMBLE L L, BOLANDER C R, et al. A review of avian-inspired morphing for UAV flight control[J]. Progress in Aerospace Sciences2022132: 100825.
4 乔渭阳, 仝帆, 陈伟杰, 等. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报201836(1): 98-121.
  QIAO W Y, TONG F, CHEN W J, et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica201836(1): 98-121 (in Chinese).
5 MA X Y, GONG X, TANG Z Q, et al. Control of leading-edge separation on bioinspired airfoil with fluttering coverts[J]. Physical Review E2022105(2): 025107.
6 GONG X A, MA X Y, JIANG N. Position-dependence straight-wing experiments of artificial coverts in flow separation control at a high Reynolds number[J]. Acta Mechanica Sinica202440(4): 323126.
7 王将升, 王晋军. 多段翼低雷诺数绕流涡-边界层相互干扰[J]. 航空学报202344(12): 127652.
  WANG J S, WANG J J. Vortex/boundary-layer interactions over multi-element airfoil at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica202344(12): 127652 (in Chinese).
8 康伟, 胡仕林, 王彦清. 介电弹性薄膜翼型的增升效应机理[J]. 航空学报202344(18): 128318.
  KANG W, HU S L, WANG Y Q. Lift enhancement mechanism of dielectric elastic membrane airfoil[J]. Acta Aeronautica et Astronautica Sinica202344(18): 128318 (in Chinese).
9 GONG X, MA X Y, FAN Z Y, et al. Wavelet analysis of the coherent structures in airfoil leading-edge separation control by bionic coverts[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2023237(9): 2076-2089.
10 WALEFFE F. On a self-sustaining process in shear flows[J]. Physics of Fluids19979(4): 883-900.
11 DURIEZ T, AIDER J L, WESFREID J E. Self-sustaining process through streak generation in a flat-plate boundary layer[J]. Physical Review Letters2009103(14): 144502.
12 ZHOU Y Z, CAI Z, LI Q L, et al. Spray characteristics of a liquid fuel jet in a tandem backward-facing step cavity in supersonic flow[J]. Aerospace Science and Technology2023141: 108514.
13 MA C H, AWASTHI M, MOREAU D, et al. Aeroacoustics of turbulent flow over a forward-backward facing step[J]. Journal of Sound and Vibration2023563: 117840.
14 MA X Y, TANG Z Q, JIANG N. Eulerian and Lagrangian analysis of coherent structures in separated shear flow by time-resolved particle image velocimetry[J]. Physics of Fluids202032(6): 065101.
15 李斌斌, 姚勇, 顾蕴松, 等. 基于合成射流的二维后台阶分离流主动控制[J]. 航空学报201637(6): 1753-1762.
  LI B B, YAO Y, GU Y S, et al. Active control of 2D backward facing step separated flow based on synthetic jet[J]. Acta Aeronautica et Astronautica Sinica201637(6): 1753-1762 (in Chinese).
16 LU T Y, HU H B, SONG J, et al. Lattice Boltzmann modeling of backward-facing step flow controlled by a synthetic jet[J]. Journal of Hydrodynamics202335(4): 757-769.
17 张维乐, 王芳芳, 吴时强, 等. 凹槽长度对后台阶湍流特性影响研究[J]. 水力发电学报202342(1): 86-94.
  ZHANG W L, WANG F F, WU S Q, et al. Study on effect of groove length on hydraulic characteristics of backward facing step flows[J]. Journal of Hydroelectric Engineering202342(1): 86-94 (in Chinese).
18 EATON J K, JOHNSTON J P. A review of research on subsonic turbulent flow reattachment[J]. AIAA Journal198119(9): 1093-1100.
19 LORTIE S, MYDLARSKI L. Investigation of internal intermittency by way of higher-order spectral moments[J]. Journal of Fluid Mechanics2022932: A20.
20 CARNEIRO J A N E, AYATI A A. Wave spectrum characterization in turbulent stratified air-water flows in a large diameter pipe[J]. International Journal of Multiphase Flow2023167: 104521.
21 LEE H G, KIM J. Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids[J]. European Journal of Mechanics-B201549: 77-88.
22 OTHMAN A K, NAIR N J, GOZA A, et al. Feather-inspired flow control device across flight regimes[J]. Bioinspiration & Biomimetics202318(6): 066010.
23 DENG Y F, TANG Y C, WANG P, et al. Fluid-structure-thermal interaction of a self-fluttering membrane in turbulent channel flow[J]. International Journal of Heat and Fluid Flow202294: 108947.
24 刘一宏, 马兴宇, 巩绪安, 等. 仿生覆羽控制固定翼无人机流动失速风洞实验[J]. 空气动力学学报202341(10): 52-60.
  LIU Y H, MA X Y, GONG X A, et al. Wind tunnel experiment on control of stalling flow of fixed wing UAV with bionic coverts[J]. Acta Aerodynamica Sinica202341(10): 52-60 (in Chinese).
文章导航

/