航空发动机数字孪生专栏

基于数字孪生的航空发动机配合界面装配分析

  • 李瑾岳 ,
  • 张鹏飞 ,
  • 郭跃成 ,
  • 徐茂程 ,
  • 赵罡
展开
  • 1.北京航空航天大学 航空发动机研究院,北京 100191
    2.中国航发湖南动力机械研究所,株洲 412000
    3.北京航空航天大学 机械工程及自动化学院,北京 100191
.E-mail: ftd423@buaa.edu.cn

收稿日期: 2023-10-30

  修回日期: 2023-11-20

  录用日期: 2024-01-31

  网络出版日期: 2024-04-19

基金资助

国家科技重大专项(J2022-VII-0001-0043)

Assembly analysis of aero-engine mating interface based on digital twin

  • Jinyue LI ,
  • Pengfei ZHANG ,
  • Yuecheng GUO ,
  • Maocheng XU ,
  • Gang ZHAO
Expand
  • 1.Research Institute of Aero-engine,Beihang University,Beijing 100191,China
    2.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412000,China
    3.School of Mechanical Engineering and Automation,Beihang University,Beijing 100191,China
E-mail: ftd423@buaa.edu.cn

Received date: 2023-10-30

  Revised date: 2023-11-20

  Accepted date: 2024-01-31

  Online published: 2024-04-19

Supported by

National Science and Technology Major Project of China(J2022-VII-0001-0043)

摘要

随着航空发动机零部件加工精度、质量稳定性的提升,装配精度逐渐成为影响产品精度的关键因素。目前已有基于数学模型的装配误差分析方法,能够实现配合界面形位偏差对产品最终装配偏差影响的预测。然而,这些方法受到建模方法的限制,对配合界面的几何物理信息进行了简化拟合,虽然能够提高计算分析的便捷性,但也导致其无法足够准确地表征表面形貌偏差特征,进而导致无法准确分析其对装配的影响。特别是面向航空发动机等精密机械产品,装配配合界面形貌的微小几何偏差会在大载荷条件下对产品质量、稳定性产生重要影响。因此,提出一种基于数字孪生的装配偏差分析方法。以数字孪生技术为框架,使用肤面模型作为特征表面的建模方法,结合实测数据驱动的多因素仿真模型,实现装配界面变动对装配精度影响的综合分析。开发了发动机装配界面试验件,并通过对比试验和模拟结果,验证了所提出数字孪生方法的有效性。

本文引用格式

李瑾岳 , 张鹏飞 , 郭跃成 , 徐茂程 , 赵罡 . 基于数字孪生的航空发动机配合界面装配分析[J]. 航空学报, 2024 , 45(21) : 629800 -629800 . DOI: 10.7527/S1000-6893.2024.29800

Abstract

With the improvement of machining accuracy and quality stability of aero-engine parts, assembly accuracy has gradually become the critical factor affecting product accuracy. To predict the influence of form and position deviation of mating surfaces on the product final assembly deviation, assembly error analysis methods based on mathematical models have been developed. However, these methods are constrained by modeling limitations, leading to a simplified approximation of the geometric and physical information for the mating interfaces. While the convenience of computational analysis is enhanced, the accurate representation of surface morphology deviations is hindered, thereby, resulting in the inability to precisely analyze their influence on the assembly process. Especially for precision mechanical products, such as aero-engine, small deviations could have an important impact on product quality and stability under large load conditions. Therefore, an assembly deviation analysis method based on digital twin is proposed. This solution leverages the digital twin technology as the framework, utilizes the skin model shapes as the modeling method of the mating surface, and combines the data-driven multi-factor simulation model to realize the comprehensive analysis of influence of the assembly mating surface deviation on the assembly accuracy. A set of engine assembly interface test work pieces are performed, and the effectiveness of the proposed digital twin method is verified by comparing the experiment with simulation results.

参考文献

1 ZHU W H, HAN H, FANG M L, et al. Studies on visual scene process system of aircraft assembly[J]. Journal of Manufacturing Systems201332(4): 580-597.
2 郭德伦, 韩野, 张媛. 航空发动机的发展对制造技术的需求[J]. 航空制造技术201522: 68-72.
  GUO D L, HAN Y, ZHANG Y. Demand of aeroengine development for manufacturing technology[J]. Aeronautical Manufacturing Technology201522: 68-72 (in Chinese).
3 刘检华, 孙清超, 程晖, 等. 产品装配技术的研究现状、技术内涵及发展趋势[J]. 机械工程学报201854(11): 1-28.
  LIU J H, SUN Q C, CHENG H, et al. The state-of-the-art, connotation and developing trends of the products assembly technology[J]. Journal of Mechanical Engineering201854(11): 1-28 (in Chinese).
4 赵罡, 李瑾岳, 徐茂程, 等. 航空发动机关键装配技术综述与展望[J]. 航空学报202243(10): 527484.
  ZHAO G, LI J Y, XU M C, et al. Research status and prospect of key aero-engine assembly technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527484 (in Chinese).
5 张渝, 李琳, 陈津, 等. 航空发动机重要装配工艺分析及研发展望[J]. 航空制造技术201962(15): 14-21.
  ZHANG Y, LI L, CHEN J, et al. Research current status and prospect on aero-engine assembly process technology[J]. Aeronautical Manufacturing Technology201962(15): 14-21 (in Chinese).
6 陈爽. 螺栓-止口连接的安装边制造误差对装配性能的影响研究[D]. 大连: 大连理工大学, 2021.
  CHEN S. Research on the influence of manufacturing error of installation edge of bolt-stop connection on assembly performance[D].Dalian: Dalian University of Technology, 2021 (in Chinese).
7 刘亮. 基于机器学习的航发转子装配精度预测与优化[D]. 大连: 大连理工大学, 2021.
  LIU L. Prediction and optimization of assembly accuracy of aeroengine rotor based on machine learning[D]. Dalian: Dalian University of Technology, 2021 (in Chinese).
8 ZHENG B, YU H D, LAI X M. Assembly deformation prediction of riveted panels by using equivalent mechanical model of riveting process[J]. The International Journal of Advanced Manufacturing Technology201792(5): 1955-1966.
9 孙汕民, 周烁, 高鸽, 等. 航空发动机装配仿真的关键技术问题[J]. 航空制造技术201861(22): 98-103.
  SUN S M, ZHOU S, GAO G, et al. Key technical issues on aero-engine assembly simulation[J]. Aeronautical Manufacturing Technology201861(22): 98-103 (in Chinese).
10 陶飞, 张贺, 戚庆林, 等. 数字孪生十问: 分析与思考[J]. 计算机集成制造系统202026(1): 1-17.
  TAO F, ZHANG H, QI Q L, et al. Ten questions towards digital twin: Analysis and thinking[J]. Computer Integrated Manufacturing Systems202026(1): 1-17 (in Chinese).
11 GRIEVES M. Virtually perfect: Driving innovative and lean products through product lifecycle management[M]. Merritt Island: Space Coast Press, 2011.
12 LIU S M, BAO J S, LU Y Q, et al. Digital twin modeling method based on biomimicry for machining aerospace components[J]. Journal of Manufacturing Systems202158: 180-195.
13 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统201824(1): 1-18.
  TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems201824(1): 1-18 (in Chinese).
14 戴晟, 赵罡, 于勇, 等. 数字化产品定义发展趋势: 从样机到孪生[J]. 计算机辅助设计与图形学学报201830(8): 1554-1562.
  DAI S, ZHAO G, YU Y, et al. Trend of digital product definition: From mock-up to twin[J]. Journal of Computer-Aided Design & Computer Graphics201830(8): 1554-1562 (in Chinese).
15 刘永泉, 黎旭, 任文成, 等. 数字孪生助力航空发动机跨越发展[J]. 航空动力2021(2): 24-29.
  LIU Y Q, LI X, REN W C, et al. Digital Twin boosting leap-forward development of aero engine[J]. Aerospace Power2021(2): 24-29 (in Chinese).
16 孙惠斌, 颜建兴, 魏小红, 等. 数字孪生驱动的航空发动机装配技术[J]. 中国机械工程202031(7): 833-841.
  SUN H B, YAN J X, WEI X H, et al. Digital twin-driven aero-engine assembly technology[J]. China Mechanical Engineering202031(7): 833-841 (in Chinese).
17 BAO Q W, ZHAO G, YU Y, et al. Ontology-based modeling of part digital twin oriented to assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022236(1-2): 16-28.
18 汪祥, 王友涛, 唐彬, 等. 力矩-转角拧紧工艺在改进发动机机匣装配质量的应用研究[J]. 装备制造技术2021(3): 116-118, 142.
  WANG X, WANG Y T, TANG B, et al. Improvement of torque angle tightening process the application research of the assembly quality of engine gearbox[J]. Equipment Manufacturing Technology2021(3): 116-118, 142 (in Chinese).
19 王方, 甘甜, 王煜栋, 等. 航空发动机燃烧室数字孪生体系关键技术[J]. 航空动力学报202338(7): 1546-1560.
  WANG F, GAN T, WANG Y D, et al. Key technology of digital twin system for aero-engine combustors[J]. Journal of Aerospace Power202338(7): 1546-1560 (in Chinese).
20 刘美. 航空发动机气路系统数字孪生技术研究与开发[D]. 哈尔滨: 哈尔滨工业大学, 2020: 13-21.
  LIU M. Research and development of digital twin technology for aero engine gas path system[D]. Harbin: Harbin Institute of Technology, 2020: 13-21 (in Chinese).
21 郭钢毅. 航发转子螺栓-止口连接界面均匀性分析及工艺调控研究[D]. 大连: 大连理工大学, 2022: 1-6.
  GUO G Y. Research on the contact uniformity and process control of bolt-spigot connection structure of aero-engine rotor[D].Dalian: Dalian University of Technology, 2022: 1-6 (in Chinese).
22 颜诚, 王昱景, 董世煌, 等. 考虑接触状态和力学特性差异的圆弧端齿连接安装角度优化方法[J]. 航空动力学报2024, doi: 10.13224/j.cnki.jasp.20220971 .
  YAN C, WANG Y J, DONG S H, et al. Assembly angle optimization of curvic couplings considering contact status and mechanical characteristics[J]. Journal of Aerospace Power2024, doi: 10.13224/j.cnki.jasp.20220971 (in Chinese).
23 李伦绪, 陈果, 杨默晗. 航空发动机套齿连接结构刚度特性仿真分析及试验研究[J]. 中国机械工程202233(18): 2249-2257.
  LI L X, CHEN G, YANG M H. Simulation analysis and experimental study of stiffness characteristics of aero-engine spline couplings[J]. China Mechanical Engineering202233(18): 2249-2257 (in Chinese).
24 张譍之, 孙惠斌, 颜诚, 等. 短精密螺栓连接结构组合偏心预测及安装相位优化[J]. 航空动力学报2024, doi:10.13224/j.cnki.jasp.20220421 .
  ZHANG Y Z, SUN H B, YAN C, et al. Prediction of assembly eccentricity and optimization of installation phase for short precision bolted structures[J]. Journal of Aerospace Power2024, doi: 10.13224/j.cnki.jasp.20220421 (in Chinese).
25 ZHOU T Y, HU L, JIN X X, et al. Measuring point planning and fitting optimization of the flange and spigot structures of aeroengine rotors[J]. Machines202311(8): 786.
26 ZHANG D Y, YANG C, HE T, et al. Modelling and stress analysis for double-row curvic couplings[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021235(19): 4231-4243.
27 QURESHI W, CURA F, MURA A. Prediction of fretting wear in aero-engine spline couplings made of 42CrMo4 [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017231(24): 4684-4692.
28 王中宇, 孟浩, 付继华. 表面综合形貌误差的灰色分离方法[J]. 仪器仪表学报200829(9): 1810-1815.
  WANG Z Y, MENG H, FU J H. Separation method for surface comprehensive topography based on grey theory[J]. Chinese Journal of Scientific Instrument200829(9): 1810-1815 (in Chinese).
29 ZHANG H, LIU Q, CHEN X, et al. A digital twin-based approach for designing and multi-objective optimization of hollow glass production line[J]. IEEE Access20175: 26901-26911.
30 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统201723(4): 753-768.
  ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems201723(4): 753-768 (in Chinese).
31 GRIEVES M W. Product lifecycle management: The new paradigm for enterprises[J]. International Journal of Product Development20052(1-2): 71.
32 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统201925(1): 1-18.
  TAO F, LIU W Y, R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems201925(1): 1-18 (in Chinese).
33 SCHLEICH B, ANWER N, MATHIEU L, et al. Skin Model Shapes: A new paradigm shift for geometric variations modelling in mechanical engineering[J]. Computer-Aided Design201450: 1-15.
34 刘婷. 基于肤面模型的装配误差分析方法研究[D]. 杭州: 浙江大学, 2019: 131.
  LIU T. Study on the methods of assembly error analysis based on skin model[D]. Hangzhou: Zhejiang University, 2019: 131 (in Chinese).
35 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 产品几何技术规范(GPS) 光滑工件尺寸的检验: [S]. 北京: 中国标准出版社, 2009.
  General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Geometrical Product Specifications (GPS)—Inspection of plain workpiece sizes: [S]. Beijing: Standards Press of China, 2009 (in Chinese).
36 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 产品几何技术规范(GPS) 表面结构 轮廓法 表面波纹度词汇: [S]. 北京: 中国标准出版社, 2009.
  General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Geometrical product specification (GPS)—Surface texture: Profile method—Surface waviness terms: [S]. Beijing: Standards Press of China, 2009 (in Chinese).
37 宋寿鹏, 邵勇华, 堵莹. 采样方法研究综述[J]. 数据采集与处理201631(3): 452-463.
  SONG S P, SHAO Y H, DU Y. Survey of sampling methods[J]. Journal of Data Acquisition and Processing201631(3): 452-463 (in Chinese).
38 SUN Q C, ZHAO B B, LIU X, et al. Assembling deviation estimation based on the real mating status of assembly[J]. Computer-Aided Design2019115: 244-255.
39 MA S H, HU T L, XIONG Z Q. Precision assembly simulation of skin model shapes accounting for contact deformation and geometric deviations for statistical tolerance analysis method[J]. International Journal of Precision Engineering and Manufacturing202122(6): 975-989.
40 DESROCHERS A. A CAD/CAM representation model applied to tolerance transfer methods[J]. Journal of Mechanical Design2003125(1): 14-22.
41 DESROCHERS A, RIVIèRE A. A matrix approach to the representation of tolerance zones and clearances[J]. The International Journal of Advanced Manufacturing Technology199713(9): 630-636.
42 GAO J S, CHASE K W, MAGLEBY S P. Generalized 3-D tolerance analysis of mechanical assemblies with small kinematic adjustments[J]. IIE Transactions199830(4): 367-377.
43 DING S Y, JIN S, LI Z M, et al. Multistage rotational optimization using unified Jacobian-Torsor model in aero-engine assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019233(1): 251-266.
44 黄智, 李超, 李凯, 等. 航空叶片型面三坐标检测技术现状及发展趋势[J]. 航空制造技术201721: 73-79.
  HUANG Z, LI C, LI K, et al. Status and prospect of detection technology of coordinate measuring machine for blade surface of aeroengine[J]. Aeronautical Manufacturing Technology201721: 73-79 (in Chinese).
45 孙贵青,吕玉红. 航空发动机先进装配工艺检测技术[C]∥2015年第二届中国航空科学技术大会. 北京: 中国航空学会, 2015: 7.
  SUN G Q, LV Y H. The advanced detection methods of aero-engine assembly technology[C]∥The 2nd China Aeronautical Science and Technology Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 7 (in Chinese).
46 Model EAS 1000G Genspect system[EB/OL]. [2024-01-31]. .
47 Aerospect SPS stack prediction [EB/OL]. [2024-01-31]..
48 Integrated turbine rotor measurement and assembly platforms[EB/OL]. [2024-01-31]. .
文章导航

/